643
Views
8
CrossRef citations to date
0
Altmetric
Articles

Acrylamide assessment of wheat bread incorporating chia seeds (Salvia hispanica L.) by LC-MS/MS

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 388-395 | Received 05 Oct 2020, Accepted 15 Nov 2020, Published online: 22 Jan 2021

References

  • Adani G, Filippini T, Wise LA, Halldorsson TI, Blaha L, Vinceti M. 2020. Dietary intake of acrylamide and risk of breast, endometrial and ovarian cancers: a systematic review and dose-response meta-analysis. Cancer Epidemiol Biomarkers Prev. 29:1095–1106. doi:10.1158/1055-9965.EPI-19-1628.
  • Amrein TM, Schönbächler B, Escher F, Amado R. 2004. Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. J Agric Food Chem. 52(13):4282–4288. doi:10.1021/jf049648b.
  • Anjum FM, Ahmad I, Butt MS, Sheikh MA, Pasha I. 2005. Amino acid composition of spring wheats and losses of lysine during chapati baking. J Food Compos Anal. 18(6):523–532. doi:10.1016/j.jfca.2004.04.009.
  • Ayerza R. 2013. Seed composition of two chia (Salvia hispanica L.) genotypes which differ in seed color. Emir J Food Agric. 25:495–500.
  • Bonafaccia G, Galli V, Francisci R, Mair V, Skrabanja V, Kreft I. 2000. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 68(4):437–441. doi:10.1016/S0308-8146(99)00215-0.
  • Boyaci Gunduz C, Bilgin A, Cengiz MF. 2017. Acrylamide contents of some commercial crackers, biscuits and baby biscuits. Akademik Gida. 1.
  • Bråthen E, Knutsen SH. 2005. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem. 92(4):693–700. doi:10.1016/j.foodchem.2004.08.030.
  • Capuano E, Ferrigno A, Acampa I, Serpen A, Açar ÖÇ, Gökmen V, Fogliano V 2009. Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food research international. https://agris.fao.org/agris-search/search.do?recordID=US201301671421.
  • Caruso MC, Favati F, Di Cairano M, Galgano F, Labella R, Scarpa T, Condelli N. 2018. Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. LWT. 87:400–405. doi:10.1016/j.lwt.2017.09.015.
  • Claeys WL, De Vleeschouwer K, Hendrickx ME. 2005. Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnol Prog. 21(5):1525–1530. doi:10.1021/bp050194s.
  • Claus A, Carle R, Schieber A. 2008. Acrylamide in cereal products: A review. J Cereal Sci. 47(2):118–133. doi:10.1016/j.jcs.2007.06.016.
  • Coelho MS, de Las Salas-mellado MM. 2015. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT - Food Sci Technol. 60(2, Part 1):729–736. doi:10.1016/j.lwt.2014.10.033.
  • Costantini L, Lukšič L, Molinari R, Kreft I, Bonafaccia G, Manzi L, Merendino N. 2014. Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chem. 165:232–240. doi:10.1016/j.foodchem.2014.05.095.
  • da Marineli RS, Moraes ÉA, Lenquiste SA, Godoy AT, Eberlin MN, Maróstica MR Jr. 2014. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT - Food Sci Technol. 59(2):1304–1310. doi:10.1016/j.lwt.2014.04.014.
  • [EFSA] European Food Safety Authority. 2011. Results on acrylamide levels in food from monitoring years 2007–2009 and Exposure assessment. Efsa J. 9(4):2133. doi:10.2903/j.efsa.2011.2133.
  • [EFSA] European Food Safety Authority. 2015. Scientific Opinion on acrylamide in food. EFSA J. 13(6):4104.
  • Friedman M, Mottram DS, editors. 2005. Chemistry and safety of acrylamide in food. New York (NY): Springer.
  • Gökmen V, Şenyuva HZ. 2007. Acrylamide formation is prevented by divalent cations during the Maillard reaction. Food Chem. 103(1):196–203. doi:10.1016/j.foodchem.2006.08.011.
  • Grancieri M, Martino HSD, de Mejia EG. 2019. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Compr Rev Food Sci Food Saf. 18(2):480–499. doi:10.1111/1541-4337.12423.
  • Hidalgo FJ, Delgado RM, Navarro JL, Zamora R. 2010. Asparagine decarboxylation by lipid oxidation products in model systems. J Agric Food Chem. 58(19):10512–10517. doi:10.1021/jf102026c.
  • Iglesias-Puig E, Haros M. 2013. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur Food Res Technol. 237(6):865–874. doi:10.1007/s00217-013-2067-x.
  • Joint Expert Committee on Food Additives, editor. 2006. Evaluation of certain food contaminants: sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. Geneva (NY): World Health Organization.
  • Keramat J, LeBail A, Prost C, Jafari M. 2011. Acrylamide in baking products: a review article. Food Bioprocess Technol. 4(4):530–543. doi:10.1007/s11947-010-0495-1.
  • Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. 2019. Chia seeds (Salvia Hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules. 25(1):11. doi:10.3390/molecules25010011.
  • Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. 2019. The chemical composition and nutritional value of chia seeds—current state of knowledge. Nutrients. 11(6):1242. doi:10.3390/nu11061242.
  • Liu Y, Wang P, Chen F, Yuan Y, Zhu Y, Yan H, Hu X. 2015. Role of plant polyphenols in acrylamide formation and elimination. Food Chem. 186:46–53.
  • Mesías MC, Holgado F, Márquez-Ruiz G, Morales FJ. 2016. Risk/benefit considerations of a new formulation of wheat-based biscuit supplemented with different amounts of chia flour. LWT. 73:528–535. doi:10.1016/j.lwt.2016.06.056.
  • Mohd Ali N, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. 2012. The promising future of Chia, Salvia hispanica L. J Biomed Biotechnol. 2012:1–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518271/.
  • Mottram DS, Wedzicha BL, Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature. 419(6906):448–449. doi:10.1038/419448a.
  • Murray SM, Waddell BM, Wu C-W. 2020. Neuron-specific toxicity of chronic acrylamide exposure in C. elegans. Neurotoxicol Teratol. 77:106848. doi:10.1016/j.ntt.2019.106848.
  • Muttucumaru N, Powers SJ, Elmore JS, Dodson A, Briddon A, Mottram DS, Halford NG. 2017. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chem. 220:76–86. doi:10.1016/j.foodchem.2016.09.199.
  • Oliveira-Alves SC, Vendramini-Costa DB, Betim Cazarin CB, Maróstica Júnior MR, Borges Ferreira JP, Silva AB, Prado MA, Bronze MR. 2017. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 232:295–305. doi:10.1016/j.foodchem.2017.04.002.
  • Rahman M, de Camargo AC, Shahidi F. 2017. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J Funct Foods. 35:622–634. doi:10.1016/j.jff.2017.06.044.
  • Sayed-Ahmad B, Talou T, Straumite E, Sabovics M, Kruma Z, Saad Z, Hijazi A, Merah O. 2018. Evaluation of nutritional and technological attributes of whole wheat based bread fortified with Chia flour. Foods. 7(9):135. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164616/.
  • Shahidi F. 2009. Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Technol. 20(9):376–387. doi:10.1016/j.tifs.2008.08.004.
  • Shen Y, Chen G, Li Y. 2019. Effect of added sugars and amino acids on acrylamide formation in white pan bread. Cereal Chem. 96(3):545–553. doi:10.1002/cche.10154.
  • Sohn M, Ho C-T 2002. Ammonia generation during thermal degradation of amino acids. https://pubs.acs.org/doi/pdf/10.1021/jf00060a001.
  • Taeymans D, Wood J, Ashby P, Blank I, Studer A, Stadler RH, Gondé P, Van Eijck P, Lalljie S, Lingnert H, et al. 2004. A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit Rev Food Sci Nutr. 44(5):323–347. doi:10.1080/10408690490478082.
  • Thompson M, Ellison SLR, Wood R. 2002. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl Chem. 74(5):835–855. doi:10.1351/pac200274050835.
  • Timilsena YP, Vongsvivut J, Adhikari R, Adhikari B. 2017. Physicochemical and thermal characteristics of Australian chia seed oil. Food Chem. 228:394–402. doi:10.1016/j.foodchem.2017.02.021.
  • Turck D, Castenmiller J, de Henauw S, Hirsch‐Ernst KI, Kearney J, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, et al. 2019. Safety of chia seeds (Salvia hispanica L.) powders, as novel foods, pursuant to Regulation (EU) 2015/2283. EFSA J. 17(6):e05716.
  • Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, Hussain J. 2016. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol. 53(4):1750–1758. doi:10.1007/s13197-015-1967-0.
  • Yaylayan VA, Wnorowski A, Perez Locas C. 2003. Why asparagine needs carbohydrates to generate acrylamide. J Agric Food Chem. 51(6):1753–1757. doi:10.1021/jf0261506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.