3,063
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Progress on reducing acrylamide levels in potato crisps in Europe, 2002 to 2019

, , & ORCID Icon
Pages 782-806 | Received 09 Nov 2020, Accepted 27 Dec 2020, Published online: 18 Mar 2021

References

  • Amrein TM, Bachmann S, Noti A, Biedermann M, Barbosa MF, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, et al. 2003. Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems. J Agric Food Chem. 51(18):5556–5560. doi:10.1021/jf034344v.
  • Becalski A, Lau BPY, Lewis D, Seaman SW, Hayward S, Sahagian M, Ramesh M, Leclerc Y. 2004. Acrylamide in French fries: influence of free amino acids and sugars. J Agric Food Chem. 52(12):3801–3806. doi:10.1021/jf0349376.
  • Chawla R, Shakya R, Rommens CM. 2012. Tuber-specific silencing of asparagine synthetase-1 reduces the acrylamide-forming potential of potatoes grown in the field without affecting tuber shape and yield. Plant Biotech J. 10:913–924. doi:10.1111/j.1467-7652.2012.00720.x.
  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibebu R, Daviso S, Ray EE, Daulhac A, et al. 2016. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotech J. 14:169–176. doi:10.1111/pbi.12370.
  • [CONTAM Panel] EFSA Panel on Contaminants in the Food Chain. 2015. Scientific opinion on acrylamide in food. EFSA J. 13:4104. doi:10.2903/j.efsa.2015.4139
  • Curtis TY, Postles J, Halford NG. 2014. Reducing the potential for processing contaminant formation in cereal products. J Cereal Sci. 59:382–392. doi:10.1016/j.jcs.2013.11.002.
  • De Wilde T, De Meulenaer B, Mestdagh F, Govaert Y, Vandeburie S, Ooghe W, Fraselle S, Demeulemeester K, van Peteghem C, Calus A, et al. 2005. Influence of storage practices on acrylamide formation during potato frying. J Agric Food Chem. 53:6550–6557. doi:10.1021/jf050650s.
  • [EFSA] European Food Safety Authority. 2009. Results on the monitoring of acrylamide levels in food. EFSA Sci Rep. 285:1–26.
  • [EFSA] European Food Safety Authority. 2010. Results on acrylamide levels in food from monitoring year 2008. Sci Rep EFSA J. 8:1599. doi:10.2903/j.efsa.2010.1599
  • [EFSA] European Food Safety Authority. 2011. Results on acrylamide levels in food from monitoring years 2007-2009 and exposure assessment. EFSA J. 9:2133. doi:10.2903/j.efsa.2011.2133
  • [EFSA] European Food Safety Authority. 2012. Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 10:2938. doi:10.2903/j.efsa.2012.2938
  • Eisenbrand G. 2020. Revisiting the evidence for genotoxicity of acrylamide (AA), key to risk assessment of dietary AA exposure. Arch Toxicol. 94:2939–2950. doi:10.1007/s00204-020-02794-3.
  • Elmore JS, Dodson AT, Briddon A, Halford NG, Mottram DS. 2010. The effects of storage on the formation of aroma and acrylamide in heated potato. In: Mottram DS, Taylor AJ, editors. Controlling Maillard pathways to generate flavors. Washington (DC): American Chemical Society; p. 95–109.
  • Elmore JS, Briddon A, Dodson AT, Muttucumaru N, Halford NG, Mottram DS. 2015. Acrylamide in potato crisps prepared from 20 UK-grown varieties: effects of variety and tuber storage time. Food Chem. 182:1–8. doi:10.1016/j.foodchem.2015.02.103.
  • Elmore JS, Koutsidis G, Dodson AT, Mottram DS, Wedzicha BL. 2005. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems. J Agric Food Chem. 53:1286–1293. doi:10.1021/jf048557b.
  • European Commission. 1993. Council regulation (EEC) No 315/93 of 8 February 1993 laying down community procedures for contaminants in food. Brussels (Belgium):European Commission.
  • European Commission. 2017. Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Brussels (Belgium):European Commission.
  • European Parliament. 2017. http://www.emeeting.europarl.europa.eu/emeeting/committee/agenda/201701/ENVI?meeting=ENVI-2017-0130_1&session=01-31-14–00.
  • [IARC] International Agency for Research on Cancer. 1994. IARC monographs on the evaluation of carcinogenic risks to humans vol 60. Some industrial chemicals. Lyon (France): International Agency for Research on Cancer (IARC).
  • [JECFA] Joint FAO/WHO Expert Committee on Food Additives. 2006. Evaluation of certain food contaminants. Sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. [Rome, 2005 Feb 8–17]; Geneva (Switzerland): WHO Technical Reports Series 930.
  • FoodDrinkEurope. 2019. Acrylamide toolbox 2019. Brussels (Belgium): FoodDrinkEurope.
  • Friedman M. 2003. Chemistry, biochemistry and safety of acrylamide. A review. J Agric Food Chem. 51:4504–4526.
  • Halford, NG. 2019. Legislation governing genetically modified and genome‐edited crops in Europe: the need for change. J. Sci. Food Agric. 99:8–12.
  • Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS. 2011. Sugars in crop plants. Ann Applied Biol. 158:1–25. doi:10.1111/j.1744-7348.2010.00443.x.
  • Halford NG, Muttucumaru N, Powers SJ, Gillatt PN, Hartley S, Elmore JS, Mottram DS. 2012. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation. J Agric Food Chem. 60:12044–12055. doi:10.1021/jf3037566.
  • Mottram DS. 2007. The Maillard reaction: source of flavour in thermally processed foods. In: Berger RG, editor. Flavours and fragrances: chemistry, bioprocessing and sustainability. Berlin (Germany): Springer-Verlag; p. 269–284.
  • Mottram DS, Wedzicha BL, Dodson AT. 2002. Acrylamide is formed in the Maillard reaction. Nature. 419:448–449. doi:10.1038/419448a.
  • Muttucumaru N, Powers SJ, Briddon A, Elmore JS, Mottram DS, Halford NG. 2014. Evidence for the complex relationship between the concentrations of free amino acids, sugars and acrylamide-forming potential in potato. Ann Applied Biol. 164:286–300. doi:10.1111/aab.12101.
  • Parker JK, Balagiannis DP, Higley J, Smith G, Wedzicha BL, Mottram DS. 2012. Kinetic model for the formation of acrylamide during the finish-frying of commercial French fries. J Agric Food Chem. 60:9321–9331. doi:10.1021/jf302415n.
  • Paul V, Ezekiel R, Pandey R. 2016. Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. J Food Sci Technol. 53:1–18. doi:10.1007/s13197-015-1980-3.
  • Powers SJ, Mottram DS, Curtis A, Halford NG. 2013. Acrylamide concentrations in potato crisps in Europe from 2002 to 2011. Food Addit Contam Part A. 30:1493–1500. doi:10.1080/19440049.2013.805439.
  • Powers SJ, Mottram DS, Curtis A, Halford NG. 2017. Acrylamide levels in potato crisps in Europe from 2002 to 2016. Food Addit Contam Part A. 34:2085–2100. doi:10.1080/19440049.2017.1379101.
  • Raffan S, Halford NG. 2019. Acrylamide in food: progress in and prospects for genetic and agronomic solutions. Ann Applied Biol. 175:259–281. doi:10.1111/aab.12536.
  • [USDA-APHIS] United States Department of Agriculture Animal and Plant Health Inspection Service. 2013. J.R. simplot company petition (13-022-01p) for determination of non-regulated status of low acrylamide potential and reduced black spot bruise potato events F10, F37, E12, E24, J3, J78, G11, H37, and H50: plant pest risk assessment. Riverdale Park (MD): USDA-APHIS.
  • [USDA-APHIS] United States Department of Agriculture Animal and Plant Health Inspection Service. 2014. J.R. simplot company petition (14-093-01p) for determination of nonregulated status for innateTM potatoes with late blight resistance, low acrylamide potential, reduced black spot and lowered reducing sugars: russet burbank event W8. Riverdale Park (MD): USDA-APHIS.
  • Rommens CM, Yan H, Swords K, Richael C, Ye J. 2008. Low-acrylamide French fries and potato chips. Plant Biotech J. 6:843–853. doi:10.1111/j.1467-7652.2008.00363.x.
  • Shepherd LVT, Bradshaw JE, Dale MFB, McNicol JW, Pont SDA, Mottram DS, Davies HV. 2010. Variation in acrylamide producing potential in potato: segregation of the trait in a breeding population. Food Chem. 123:568–573. doi:10.1016/j.foodchem.2010.04.070.
  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Riediker S. 2002. Acrylamide from Maillard reaction products. Nature. 419:449–450. doi:10.1038/419449a.
  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 50:4998–5006. doi:10.1021/jf020302f.
  • Wiberley-Bradford AE, Bethke PC. 2018. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes. J Sci Food Agric. 98:354–360. doi:10.1002/jsfa.8478.
  • Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, et al. 2019. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res. 29:521–531. doi:10.1101/gr.242453.118.
  • Zhu XB, Richael C, Chamberlain P, Busse JS, Bussan AJ, Jiang JM, Bethke PC. 2014. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS ONE. 9:e93381. doi:10.1371/journal.pone.0093381.
  • Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, et al. 2003. Acrylamide formation mechanism in heated foods. J Agric Food Chem. 51:4782–4787. doi:10.1021/jf034180i.