782
Views
12
CrossRef citations to date
0
Altmetric
Review

Occurrence and impact of fungicides residues on fermentation during wine production– A review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 943-961 | Received 06 Dec 2020, Accepted 16 Feb 2021, Published online: 30 Mar 2021

References

  • Abbey JA, Percival D, Abbey L, Asiedu SK, Prithiviraj B, Schilder A. 2019. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Bio Sci Technol. 29(3):207–228.
  • Agarbati A, Canonico L, Ciani M, Comitini F. 2019. The impact of fungicide treatments on yeast biota of Verdicchio and Montepulciano grape varieties. Plos One. 14(6):e0217385.
  • Agência Nacional de Vigilância Sanitária (ANVISA). 2019. Programa de análise de resíduos de agrotóxicos em alimentos (PARA). Brasília (Brasil): Agência Nacional de Vigilância Sanitária.
  • Agência Nacional de Vigilância Sanitária (ANVISA). 2015. Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA): lista de Referência de Limites Máximos de Resíduos (LMRs) para as culturas do PARA. Brasília (Brasil): Agência Nacional de Vigilância Sanitária. http://portal.anvisa.gov.br/programa-de-analise-de-registro-de-agrotoxicos-para.
  • Alves AAR, Rodrigues AS, Barros EBP, Uekane TM, Bizzo HR, Rezende CM. 2014. Determination of pesticides residues in Brazilian grape juices using GC-MS-SIM. Food Anal Methods. 7(9):1834–1839.
  • Bakırcı GT, Acay DBY, Bakırcı F, Ötleş S. 2014. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 160:379–392.
  • Berbegal C, Spano G, Tristezza M, Grieco F, Capozzi V. 2017. Microbial resources and innovation in the wine production sector. S Afr J Enol Vitic. 38(2):156–166.
  • Bisson LF. 1999. Stuck and sluggish fermentations. Am J Enol Vitic. 50(1):107–119.
  • Bizaj E, Čuš F, Raspor P. 2011. Removal of pyrimethanil and fenhexamid from saccharomyces cerevisiae liquid cultures. Food Technol Biotechnol. 49:4.
  • Bizaj E, Curtin C, Čadež N, Raspor P. 2014. Interactions between industrial yeasts and chemical contaminants in grape juice affect wine composition profile. Food Technol Biotechnol. 52(2):222–231.
  • Čadež N, Zupan J, Raspor P. 2010. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10(5):619–630.
  • Česnik HB, Š VB, Lisjak K. 2015. Plant protection product residues in red grapes and Teran PTP wine. Food Addit Contam Part B. 8(2):113–122.
  • Blateyron L, Sablayrolles JM. 2001. Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J Biosci Bioeng. 91(2):184–189.
  • Čuš F, Česnik HB, Šv B, Gregorčič A. 2010a. Pesticide residues and microbiological quality of bottled wines. Food Control. 21(2):150–154.
  • Čuš F, Česnik HB, Šv B, Gregorčič A. 2010b. Pesticide residues in grapes and during vinification process. Food Control. 21(11):1512–1518.
  • Česnik HB, Š VB, Bavčar D, Radeka S, Lisjak K. 2016. Plant protection product residues in white grapes and wines of “Malvasia Istriana” produced in Istria. Food Addit Contam Part B. 9(4):256–260.
  • Bordagaray A, Garcia-Arrona R, Millán E. 2011. Optimization of solid-phase microextraction procedure coupled to GC-ECD for triazole fungicides determination in juice samples. Food Anal Methods. 4(3):293–299.
  • Bordagaray A, García-Arrona R, Millán E. 2013. Development and application of a screening method for triazole fungicide determination in liquid and fruit samples using solid-phase microextraction and HPLC-DAD. Anal Methods. 5(10):2565–2571.
  • Brink J, Calitz F, Fourie P. 2016. Spray deposition and control of Botrytis cinerea on grape leaves and bunches: part 2 (Wine Grapes). S Afr J Enol Vitic. 37(2):157–168.
  • Briz-Cid N, Castro-Sobrino L, Rial-Otero R, Cancho-Grande B, Simal-Gándara J. 2018. Fungicide residues affect the sensory properties and flavonoid composition of red wine. J Food Compos Anal. 66:185–192.
  • Briz-Cid N, Rial-Otero R, Cámara MA, Oliva J, Simal-Gandara J. 2019. Dissipation of three fungicides and their effects on anthocyanins and color of monastrell red wines. Int J Mol Sci. 20:6.
  • Brostrom GG, Brostrom J. 2008. The business of wine: an encyclopedia: an encyclopedia. Connecticut (USA): ABC-CLIO.
  • Caboni P, Cabras P. 2010. Pesticides’ influence on wine fermentation. Adv Food Nutr Res. 59:43–62.
  • Cabras P, Diana P, Meloni M, Pirisi FM, Pirisi R. 1983. Reversed-phase high-performance liquid chromatography of pesticides: VII. Analysis of Vinclozolin, lprodione, Procymidone, Dichlozolinate and their degradation product 3, 5-dichloroaniline on white must and wine extracts. J Chromatogr A. 256:176–181.
  • Calvo-Garrido C, Haidar R, Roudet J, Gautier T, Fermaud M. 2018. Pre-selection in laboratory tests of survival and competition before field screening of antagonistic bacterial strains against Botrytis bunch rot of grapes. Biol Control. 124:100–111.
  • Capece A, Romaniello R, Scrano L, Siesto G, Romano P. 2018. Yeast starter as a biotechnological tool for reducing copper content in wine. Front Microbiol. 8:2632.
  • Capozzi V, Fragasso M, Romaniello R, Berbegal C, Russo P, Spano G. 2017. Spontaneous food fermentations and potential risks for human health. Fermentation. 3(4):49.
  • Carpinteiro I, Ramil M, Rodríguez I, Cela R. 2010. Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 1217(48):7484–7492.
  • Castro G, Pérez-Mayán L, Carpinteiro I, Ramil M, Cela R, Rodríguez I. 2020. Residues of anilinopyrimidine fungicides and suspected metabolites in wine samples. J Chromatogr A. 1622:461104.
  • Castro G, Pérez-Mayán L, Rodríguez-Cabo T, Rodríguez I, Ramil M, Cela R. 2018. Multianalyte, high-throughput liquid chromatography tandem mass spectrometry method for the sensitive determination of fungicides and insecticides in wine. Anal Bioanal Chem. 410(3):1139–1150.
  • Castro-Sobrino L, Briz-Cid N, Figueiredo-González M, Sieiro-Sampedro T, González-Barreiro C, Cancho-Grande B, Rial-Otero R, Simal-Gándara J. 2019. Impact of fungicides mepanipyrim and tetraconazole on phenolic profile and colour of Mencía red wines. Food Control. 98:412–423.
  • Chen X, Wang Y, Gao Y, Gao T, Zhang D. 2019. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. Plant Pathol J. 35(5):425.
  • Ciliberti N, Fermaud M, Roudet J, Rossi V. 2015. Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology. 105(8):1090–1096.
  • Cordero-Bueso G, Arroyo T, Valero E. 2014. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard. Int J Food Microbiol. 189:189–194.
  • Cordero-Bueso G, Mangieri N, Maghradze D, Foschino R, Valdetara F, Cantoral JM, Vigentini I. 2017. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Front Microbiol. 8:2025.
  • Covarelli L, Beccari G, Marini A, Tosi L. 2012. A review on the occurrence and control of ochratoxigenic fungal species and ochratoxin A in dehydrated grapes, non-fortified dessert wines and dried vine fruit in the Mediterranean area. Food Control. 26(2):347–356.
  • Cozzi G, Somma S, Haidukowski M, Logrieco AF. 2013. Ochratoxin A management in vineyards by Lobesia botrana biocontrol. Toxins. 5(1):49–59.
  • Crump A, Farrar J, Fournier AJ, Ellsworth PC. 2018. Employing California Pesticide use data for evaluating integrated pest management programs and informing pesticide policy and regulation. In: Zhang et al, editors. Managing and analyzing pesticide use data for pest management, environmental monitoring, public health, and public policy. Washington DC (USA): American Chemical Society (ACS) Publications; p. 225–237.
  • Daane KM, Vincent C, Isaacs R, Ioriatti C. 2018. Entomological opportunities and challenges for sustainable viticulture in a global market. Annu Rev Entomol. 63:193–214.
  • De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, Santoro V, Russo P. 2020. Botrytis cinerea and table grapes: a review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods. 9(9):1138.
  • Dhananjayan V, Jayakumar S, Ravichandran B. 2020. Conventional methods of pesticide application in agricultural field and fate of the pesticides in the environment and human health. In: Thomas KRR, Volova S, editors. Controlled release of pesticides for sustainable agriculture. Cham (Switzerland): Springer. p. 266.
  • Doulia DS, Anagnos EK, Liapis KS, Klimentzos DA. 2017. Effect of clarification process on the removal of pesticide residues in white wine. Food Control. 72:134–144.
  • Doulia DS, Anagnos EK, Liapis KS, Klimentzos DA. 2018. Effect of clarification process on the removal of pesticide residues in red wine and comparison with white wine. J Environ Sci Health Part B. 53(8):534–545.
  • Edder P, Ortelli D, Viret O, Cognard E, Montmollin AD, Zali O. 2009. Control strategies against grey mould (Botrytis cinerea Pers.: fr) and corresponding fungicide residues in grapes and wines. Food Addit Contam. 26(5):719–725.
  • [EFSA] European Food Safety Authority. 2015. Maximum residue levels (MRL). European Food Safety Authority [Internet]. http://www.efsa.europa.eu/en/mrls/mrlteam.html
  • Eissa F, Helalia A, Khorshed M, El-Sisi M. 2013. Monitoring of multi-class pesticide residues in green grape and their potential risk for Egyptian consumer. Nat Sci. 11(11):p110–115.
  • Escribano-Viana R, López-Alfaro I, López R, Santamaría P, Gutiérrez AR, González-Arenzana L. 2018a. Impact of chemical and biological fungicides applied to grapevine on grape biofilm, must, and wine microbial diversity. Front Microbiol. 9:59.
  • Escribano-Viana R, Portu J, Garijo P, Gutiérrez AR, Santamaría P, López-Alfaro I, López R, González-Arenzana L. 2018b. Evaluating a preventive biological control agent applied on grapevines against Botrytis cinerea and its influence on winemaking. J Sci Food Agric. 98(12):4517–4526.
  • Esteve-Turrillas FA, Agulló C, Abad-Somovilla A, Mercader JV, Abad-Fuentes A. 2016. Fungicide multiresidue monitoring in international wines by immunoassays. Food Chem. 196:1279–1286.
  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194.
  • Fravel D. 2005. Commercialization and implementation of biocontrol. Annu Rev Phytopathol. 43:337–359.
  • Freire L, Passamani FRF, Thomas AB, Nassur RDCMR, Silva LM, Paschoal FN, Pereira GE, Prado G, Batista LR. 2017. Influence of physical and chemical characteristics of wine grapes on the incidence of Penicillium and Aspergillus fungi in grapes and ochratoxin A in wines. Int J Food Microbiol. 241:181–190.
  • Gajbhiye VT, Gupta S, Mukherjee I, Singh SB, Singh N, Dureja P, Kumar Y. 2011. Persistence of azoxystrobin in/on grapes and soil in different grapes growing areas of India. Bull Environ Contam Toxicol. 86(1):90–94.
  • Galvez A, Abriouel H, Benomar N, Lucas R. 2010. Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol. 21(2):142–148.
  • Gary C, Metral R, Metay A, Garcia L, Mérot A, Smits N, Wéry J (2017) Towards an agroecological viticulture: advances and challenges. In: Proceedings of the 20th GiESCO International Meeting. Mendoza, Argentina, pp 1122–1127.
  • Gava A, Borsato D, Ficagna E. 2020. Effect of mixture of fining agents on the fermentation kinetics of base wine for sparkling wine production: use of methodology for modeling. LWT 131:109660.
  • Gianessi L, Williams A (2011) Fungicides have protected European wine grapes for 150 years. International pesticide benefits case study N° 19.
  • González-Álvarez M, Noguerol-Pato R, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. 2012. Changes of the sensorial attributes of white wines with the application of new anti-mildew fungicides under critical agricultural practices. Food Chem. 130(1):139–146.
  • González-Domínguez E, Fedele G, Languasco L, Rossi V. 2019. Interactions among fungicides applied at different timings for the control of Botrytis bunch rot in grapevine. Crop Prot. 120:30–33.
  • González-Rodríguez RM, Cancho-Grande B, Simal-Gándara J. 2011a. Decay of fungicide residues during vinification of white grapes harvested after the application of some new active substances against downy mildew. Food Chem. 125(2):549–560.
  • González-Rodríguez RM, Cancho-Grande B, Torrado-Agrasar A, Simal-Gándara J, Mazaira-Pérez J. 2009. Evolution of tebuconazole residues through the winemaking process of Mencía grapes. Food Chem. 117(3):529–537.
  • González-Rodríguez RM, González-Barreiro C, Rial-Otero R, Regueiro J, Torrado-Agrasar A, Martínez-Carballo E, Cancho-Grande B. 2011c. Influence of new fungicides–metiram and pyraclostrobin–on Saccharomyces cerevisiae yeast growth and alcoholic fermentation course for wine production. CyTA J Food. 9(4):329–334.
  • González-Rodríguez RM, Noguerol-Pato R, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. 2011b. Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Res Int. 44(1):397–403.
  • Hao Z, Van Tuinen D, Wipf D, Fayolle L, Chataignier O, Li X, Chen B, Gianinazzi S, Gianinazzi-Pearson V, Adrian M. 2017. Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biol Control. 109:42–50.
  • Hjorth K, Johansen K, Holen B, Andersson A, Christensen HB, Siivinen K, Toome M. 2011. Pesticide residues in fruits and vegetables from South America–a nordic project. Food Control. 22(11):1701–1706.
  • Hou X, Xu Z, Zhao Y, Liu D. 2020. Rapid analysis and residue evaluation of six fungicides in grape wine-making and drying. J Food Compos Anal. 89:103465.
  • Hu M-J, Cox KD, Schnabel G. 2016. Resistance to increasing chemical classes of fungicides by virtue of “selection by association. In Botrytis Cinerea Phytopathology. 106(12):1513–1520.
  • Hummes AP, Bortoluzzi EC, Tonini V, Da Silva LP, Petry C. 2019. Transfer of copper and zinc from soil to grapevine-derived products in young and centenarian vineyards. Water Air Soil Pollut. 230:7.
  • Jacometti MA, Wratten SD, Walter M. 2010. Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine Res. 16(1):154–172.
  • Jensen DF, Karlsson M, Sarrocco S, Vannacci G. 2016. Biological control using microorganisms as an alternative to disease resistance. In: Collinge (editor). Plant Pathogen Resistance Biotechnology. New Jersey (USA): John Wiley & Sons. p. 341–363.
  • Jiménez JJ, Bernal JL, Del Nozal MJ, Bernal J, Toribio L. 2007. Persistence and degradation of metalaxyl, lindane, fenvalerate and deltamethrin during the wine making process. Food Chem. 104(1):216–223.
  • Kasfi K, Taheri P, Jafarpour B, Tarighi S. 2018. Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Span J Agric Res. 16(1):23.
  • Kundu C, Goon A, Bhattacharyya A. 2014. Persistence behaviour of fungicide tebuconazole in a viticulture application. Bull Environ Contam Toxicol. 92(4):415–419.
  • Lagunas-Allué L, Sanz-Asensio J, Martínez-Soria M-T. 2012. Optimization and validation of a simple and fast method for the determination of fungicides in must and wine samples by SPE and GC/MS. J AOAC Int. 95(5):1511–1519.
  • Lemos Junior WJF, Bovo B, Nadai C, Crosato G, Carlot M, Favaron F, Corich V. 2016. Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Front Microbiol. 7:1249.
  • Leroch M, Kretschmer M, Hahn M. 2011. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J Phytopathology. 159(1):63–65.
  • Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E. 2017. Antifungal microbial agents for food biopreservation—a review. Microorganisms. 5(3):37.
  • Liu Y, Rousseaux S, Tourdot-Maréchal R, Sadoudi M, Gougeon R, Schmitt-Kopplin P, Alexandre H. 2017. Wine microbiome: a dynamic world of microbial interactions. Crit Rev Food Sci Nutr. 57(4):856–873.
  • López-Fernández O, Rial-Otero R, González-Barreiro C, Simal-Gándara J. 2012. Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chem. 134(1):366–374.
  • López-Seijas J, García-Fraga B, Da Silva AF, Sieiro C. 2020. Wine lactic acid bacteria with antimicrobial activity as potential biocontrol agents against fusarium oxysporum f. sp. lycopersici. Agronomy. 10(1):31.
  • Lu Y, Shao Y, Dai S, Diao J, Chen X. 2016. Stereoselective behavior of the fungicide benalaxyl during grape growth and the wine-making process. Chirality. 28(5):394–398.
  • Maisonnave P, Sanchez I, Moine V, Dequin S, Galeote V. 2013. Stuck fermentation: development of a synthetic stuck wine and study of a restart procedure. Int J Food Microbiol. 163(2–3):239–247.
  • Martins G, Vallance J, Mercier A, Albertin W, Stamatopoulos P, Rey P, Masneuf-Pomarède I. 2014. Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int J Food Microbiol. 177:21–28.
  • Martins J, Esteves C, Limpo-Faria A, Barros P, Ribeiro N, Simões T, Correia M, Delerue-Matos C. 2012. Analysis of six fungicides and one acaricide in still and fortified wines using solid-phase microextraction-gas chromatography/tandem mass spectrometry. Food Chem. 132(1):630–636.
  • Martins J, Esteves C, Simões T, Correia M, Delerue-Matos C. 2011. Determination of 24 pesticide residues in fortified wines by solid-phase microextraction and gas chromatography-tandem mass spectrometry. J Agric Food Chem. 59(13):6847–6855.
  • Martins V, Teixeira A, Gerós H. 2015. Changes in the volatile composition of wine from grapes treated with Bordeaux mixture: a laboratory-scale study. Aust J Grape Wine Res. 21(3):425–429.
  • Mewa-Ngongang M, Du Plessis HW, Ntwampe SKO, Chidi BS, Hutchinson UF, Mekuto L, Jolly NP. 2019. The use of candida pyralidae and pichia kluyveri to control spoilage microorganisms of raw fruits used for beverage production. Foods. 8(10):454.
  • Milanović V, Comitini F, Ciani M. 2013. Grape berry yeast communities: influence of fungicide treatments. Int J Food Microbiol. 161(3):240–246.
  • Mulero J, Martínez G, Oliva J, Cermeño S, Cayuela J, Zafrilla P, Martínez-Cachá A, Barba A. 2015. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem. 180:25–31.
  • Nally MC, Pesce VM, Maturano YP, Assaf LR, Toro ME, De Figueroa LC, Vazquez F. 2015. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots. Int J Food Microbiol. 204:91–100.
  • Nally MC, Pesce VM, Maturano YP, Muñoz CJ, Combina M, Toro ME, Vazquez F. 2012. Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol. 64(1):40–48.
  • Nally MC, Ponsone ML, Pesce VM, Toro ME, Vazquez F, Chulze S. 2018. Evaluation of behaviour of Lachancea thermotolerans biocontrol agents on grape fermentations. Lett Appl Microbiol. 67(1):89–96.
  • Nicolini G, Román T, Larcher R, Moser S, Tonidandel L. 2016a. Vini bianchi da viticoltura convenzionale più sani con un poco di carbone in fermentazione. L’Enologo 123:10.
  • Nicolini G, Roman T, Tonidandel L, Sboner M, Volpini A, Manara M. 2017. Abbattimento di insetticidi e fungicidi durante la fermentazione in bianco da parte di coadiuvanti enologici. L’Enologo 124:8.
  • Nicolini G, Román Villegas T, Tonidandel L, Moser S, Larcher R. 2016b. Small amounts of charcoal during fermentation reduce fungicide residues without penalising white wine aroma compounds and colour. Aust J Grape Wine Res. 22(3):376–383.
  • Noguerol-Pato R, Ferna´ndez-cruz T, Sieiro-Sampedro T, Gonza´lez-barreiro C, Cancho-Grande B, D-a C-G, García-Pastor M, M-t M-S, Sanz-Asensio J, Simal-ga´ndara J. 2016. Dissipation of fungicide residues during winemaking and their effects on fermentation and the volatile composition of wines. J Agric Food Chem. 64(6):1344–1354.
  • Noguerol-Pato R, Sieiro-Sampredro T, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. 2014a. Effect on the aroma profile of graciano and tempranillo red wines of the application of two antifungal treatments onto vines. Molecules 19(8):12173–12193.
  • Noguerol-Pato R, Torrado-Agrasar A, González-Barreiro C, Cancho-Grande B, Simal-Gándara J. 2014b. Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis. Food Chem. 146:234–241.
  • Oliva J, Girón F, Cayuela JM, Mulero J, Zafrilla P, Cámara MÁ. 2020. Effect of fungicides on the yeast population during spontaneous fermentation in the vinification of monastrell grapes. LWT. 131:109816.
  • Oliva J, Martínez G, Cermeño S, Motas M, Barba A, Cámara MA. 2018. Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. Eur Food Res Technol. 244(6):1083–1090.
  • Oliva J, Martínez-Gil A, Lorenzo C, Cámara M, Salinas MR, Barba A, Garde-Cerdán T. 2015. Influence of the use of fungicides on the volatile composition of Monastrell red wines obtained from inoculated fermentation. Food Chem. 170:401–406.
  • Oliva J, Payá P, Má C, Barba A. 2007. Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. J Environ Sci Health. 42(7):775–781.
  • Ortiz JO, Peñalver PP, Navarro AB 2010. Influence of fungicide residues in wine quality. Edited by Odile Carisse; p. 421.
  • Parafati L, Vitale A, Restuccia C, Cirvilleri G. 2015. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 47:85–92.
  • Pedrotti C, Âr M, Delamare APL, Echeverrigaray S, Da Silva Ribeiro RT, Schwambach J. 2019. Alternative control of grape rots by essential oils of two Eucalyptus species. J Sci Food Agric. 99(14):6552–6561.
  • Peña N, Antón A, Kamilaris A, Fantke P. 2018. Modeling ecotoxicity impacts in vineyard production: addressing spatial differentiation for copper fungicides. Sci Total Environ. 616:796–804.
  • Pocock K, Salazar F, Waters EJ. 2011. The effect of bentonite fining at different stages of white winemaking on protein stability. Aust J Grape Wine Res. 17(2):280–284.
  • Pretscher J, Fischkal T, Branscheidt S, Jäger L, Kahl S, Schlander M, Claus H. 2018. Yeasts from different habitats and their potential as biocontrol agents. Fermentation. 4(2):31.
  • Qin X, Xiao H, Xue C, Yu Z, Yang R, Cai Z, Si L. 2015. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol Technol. 100:160–167.
  • Raveau R, Fontaine J, Lounès-Hadj Sahraoui A. 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods. 9(3):365.
  • Regueiro J, Lopez-Fernandez O, Rial-Otero R, Cancho-Grande B, Simal-Gandara J. 2015. A review on the fermentation of foods and the residues of pesticides—biotransformation of pesticides and effects on fermentation and food quality. Crit Rev Food Sci Nutr. 55(6):839–863.
  • Rose G, Lane S, Jordan R. 2009. The fate of fungicide and insecticide residues in Australian wine grape by-products following field application. Food Chem. 117(4):634–640.
  • Russo P, Berbegal C, De Ceglie C, Grieco F, Spano G, Capozzi V. 2019. Pesticide residues and stuck fermentation in wine: new evidences indicate the urgent need of tailored regulations. Fermentation. 5(1):23.
  • Sabale R, Shabeer TA, Utture SC, Banerjee K, Jadhav MR, Oulkar DP, Adsule PG, Deshmukh MB. 2014. Dissipation kinetics, safety evaluation, and assessment of pre-harvest interval (PHI) and processing factor for kresoxim methyl residues in grape. Environ Monit Assess. 186(4):2369–2374.
  • Sarris D, Kotseridis Y, Linga M, Galiotou‐Panayotou M, Papanikolaou S. 2009. Enhanced ethanol production, volatile compound biosynthesis and fungicide removal during growth of a newly isolated Saccharomyces cerevisiae strain on enriched pasteurized grape musts. Eng Life Sci. 9(1):29–37.
  • Scariot FJ, Jahn L, Delamare APL, Echeverrigaray S. 2017. Necrotic and apoptotic cell death induced by Captan on Saccharomyces cerevisiae. World J Microbiol Biotechnol. 33(8):159.
  • Scariot FJ, Jahn L, Delamare APL, Echeverrigaray S. 2018. Necrotic cell death induced by dithianon on Saccharomyces cerevisiae. Pestic Biochem Physiol. 149:137–142.
  • Scariot FJ, Jahn LM, Delamare APL, Echeverrigaray S. 2016a. The effect of the fungicide captan on Saccharomyces cerevisiae and wine fermentation. BIO Web of Conferences. 7:02027.
  • Scariot FJ, Jahn LM, Maianti JP, Delamare APL, Echeverrigaray S. 2016b. The fungicide Mancozeb induces metacaspase-dependent apoptotic cell death in Saccharomyces cerevisiae BY4741. Apoptosis. 21(7):866–872.
  • Schmidt B, Christensen HB, Petersen A, Sloth JJ, Poulsen ME. 2013. Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit Contam Part A. 30(7):1287–1298.
  • Scott ES, Dambergs RG, Stummer BE. 2010. Fungal contaminants in the vineyard and wine quality. In: Reynolds, editor. Managing wine quality. Cambridge (UK): Woodhead Publishing Limited. p. 481–514.
  • Sen K, Cabaroglu T, Yilmaz H. 2012. The influence of fining agents on the removal of some pesticides from white wine of Vitis vinifera L. cv. Emir. Food Chem Toxicol. 50(11):3990–3995.
  • Sieiro-Sampedro T, Alonso-del-real J, Briz-Cid N, Rial-Otero R, Querol A, Simal-Gandara J. 2020b. The effect of two antifungal commercial formulations on the metabolism of a commercial Saccharomyces cerevisiae strain and their repercussion on fermentation evolution and phenylalanine catabolism. Food Microbiol. 92:103554
  • Sieiro-Sampedro T, Briz-Cid N, Pose-Juan E, Figueiredo-González M, González-Barreiro C, Simal-Gándara J, Cancho-Grande B, Rial-Otero R. 2020a. Tetraconazole alters the methionine and ergosterol biosynthesis pathways in Saccharomyces yeasts promoting changes on volatile derived compounds. Food Res Int. 130:108930.
  • Silva GAD, Bernardi TL, Schaker PDC, Agustini BC, Mello LMD, Valente P. 2016. Impact of fungicide residues on polymerase chain reaction and on yeast metabolism. Braz Arch Bio Technol. 59:e16160241.
  • Szopinska A, Christ E, Planchon S, König H, Evers D, Renaut J. 2016. Stuck at work? Quantitative proteomics of environmental wine yeast strains reveals the natural mechanism of overcoming stuck fermentation. Proteomics. 16(4):593–608.
  • Terra MF, Lira NDA, Passamani FR, Santiago WD, Cardoso MDG, Batista LR. 2016. Effect of fungicides on growth and ochratoxin A production by Aspergillus carbonarius from Brazilian wine grapes. J Food Prot. 79(9):1508–1516.
  • Togores, JH. 2018. Tratado de Enología. Volumen I y II. Madrid (Espana): Mundi-Prensa. p. 1936.
  • Uclés A, García AV, Gil García MD, Aguilera Del Real AM, Fernández-Alba AR. 2015. Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal Methods. 7(21):9158–9165.
  • Upadhayay J, Rana M, Juyal V, Bisht SS, Joshi R. 2020. Impact of pesticide exposure and associated health effects. In: Srivastava et al., editors. Pesticides in Crop Production: Physiological and Biochemical Action. New Jersey (USA):John Wiley & Sons. p. 69–88.
  • Urkude R, Dhurvey V, Kochhar S. 2019. Pesticide residues in beverages. In: Grumezescu and Holban, editors. Quality Control in the Beverage Industry. Cambridge (UK): Elsevier. p. 529–560.
  • Vallejo A, Millán L, Abrego Z, Sampedro MC, Sánchez-Ortega A, Unceta N, Gómez-Caballero A, Goicolea MA, Diez-Navajas AM, Barrio RJ. 2019. Fungicide distribution in vitiviniculture ecosystems according to different application strategies to reduce environmental impact. Sci Total Environ. 687:319–329.
  • Vaquero-Fernández L, Sanz-Asensio J, Fernández-Zurbano P, López-Alonso M, Martínez-Soria M-T. 2013. Determination of fungicide pyrimethanil in grapes, must, fermenting must and wine. J Sci Food Agric. 93(8):1960–1966.
  • Vargas M, Garrido F, Zapata N, Tapia M. 2012. Isolation and selection of epiphytic yeast for biocontrol of Botrytis cinerea Pers. on table grapes. Chil J Agric Res. 72(3):332.
  • Vargas TS, Salustriano NA, Klein B, Romão W, Src DS, Wagner R, Scherer R. 2018. Fungicides in red wines produced in south america. Food Addit Contam Part A. 35(11):2135–2144.
  • Walorczyk S, Drożdżyński D, Gnusowski B. 2011. Multiresidue determination of 160 pesticides in wines employing mixed-mode dispersive-solid phase extraction and gas chromatography–tandem mass spectrometry. Talanta. 85(4):1856–1870.
  • Wang Q-H, Fan K, Li D-W, Han C-M, Qu -Y-Y, Qi Y-K, Wu X-Q. 2020. Identification, virulence and fungicide sensitivity of colletotrichum gloeosporioides ss responsible for walnut anthracnose disease in China. Plant Dis. 104(5):1358–1368.
  • Wang X, Glawe DA, Kramer E, Weller D, Okubara PA. 2018. Biological control of Botrytis cinerea: interactions with native vineyard yeasts from Washington State. Phytopathology. 108(6):691–701.
  • Wang Y, Li P, Zhen H, Li B. 2017. The promotion of thiophanate-methyl and tebuconazole for the continuous control of Glomerella leaf spot in apple leaves by adding pellouxite as a synergistic reagent. J Plant Dis Prot. 124(6):631–639.
  • Welke JE. 2019. Fungal and mycotoxin problems in grape juice and wine industries. Curr Opin Food Sci. 29:7–13.
  • Xu G, Jia X, Zhang H, Zhang J, Nie J. 2020. Enantioselective fate of mandipropamid in grape and during processing of grape wine. Environ Sci Pollut Res. 27(32):40148–40155.
  • Zara S, Caboni P, Orro D, Farris GA, Pirisi F, Angioni A. 2011. Influence of fenamidone, indoxacarb, pyraclostrobin, and deltamethrin on the population of natural yeast microflora during winemaking of two sardinian grape cultivars. J Environ Sci Health Part B. 46(6):491–497.
  • Zhang H, Apaliya MT, Mahunu GK, Chen L, Li W. 2016. Control of ochratoxin A-producing fungi in grape berry by microbial antagonists: a review. Trends Food Sci Technol. 51:88–97.
  • Zhang Z-H, Zhao H-Y, Shen Q, Qi -P-P, Wang X-Q, Xu H, Di -S-S, Wang Z-W. 2020. High-throughput determination of fungicides in grapes using thin-film microextraction coupled with liquid chromatography–tandem mass spectrometry. J Sep Sci. 43(8):1558–1565.
  • Zhou Q, Fu M, Xu M, Chen X, Qiu J, Wang F, Chen L. 2020. Application of antagonist Bacillus amyloliquefaciens NCPSJ7 against Botrytis cinerea in postharvest Red Globe grapes. Food Sci Nutr. 8(3):1499–1508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.