342
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of formulation and heat treatment on 5-hydroxymethylfurfural formation and quality parameters in dulce de leche

ORCID Icon, , , & ORCID Icon
Pages 1118-1125 | Received 20 Dec 2020, Accepted 06 Mar 2021, Published online: 16 Apr 2021

References

  • Abraham K, Gürtler R, Berg K, Heinemeyer G, Lampen A, Appel K. 2011. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol Nutr Food Res. 55(5):667–678. doi:10.1002/mnfr.201000564.
  • Akal C, Buran İ, Delialioğlu R, Yetişemiyen A. 2018. The effect of different sugar ratio on the quality properties of milk jam. Gida/Journal of Food. 43:865–875.
  • Association of Official Analytical Chemists (AOAC). 2006. Official Methods of Analysis. In: 18th ed. Gaithersburgs (MD).
  • Barrera J, Pedreschi F, Gómez J, Zúñiga R, Mariotti-Celis M. 2021. In house validation for the direct determination of 5-hydroxymethyl-2-furfural (HMF) in “dulce de leche.”. J Food Compos Anal. 95(September:2020.
  • Bauer-Marinovic M, Taugner F, Florian S, Glatt H. 2012. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol. 86(5):701–711. doi:10.1007/s00204-012-0807-5.
  • Bellalta P, Troncoso E, Zúñiga R, Aguilera J. 2012. Rheological and microstructural characterization of WPI-stabilized O/W emulsions exhibiting time-dependent flow behavior. LWT - J Food Sci Technol. 46(2):375–381. doi:10.1016/j.lwt.2011.12.017.
  • Bellarde F. 2005. Elaboração de Doce de Leite Pastoso com Substituição Parcial dos Sólidos de Leite por Concentrado Proteíco de Soro. Revista Brasileira Multidisciplinar. 9(2):249. doi:10.25061/2527-2675/ReBraM/2006.v9i2.280.
  • Cai Y, Zhang Z, Jiang S, Yu M, Huang C, Qiu R, Zou Y, Zhang Q, Ou S, Zhou H, et al. 2014. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. J Hazard Mater. 268:1–5. doi:10.1016/j.jhazmat.2013.12.067.
  • Capuano E, Fogliano V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - J Food Sci Technol. 44(4):793–810. doi:10.1016/j.lwt.2010.11.002.
  • Cheng N, Barbano D, Drake M. 2019. Effect of pasteurization and fat, protein, casein to serum protein ratio, and milk temperature on milk beverage color and viscosity. J Dairy Sci. 102(3):2022–2043. doi:10.3168/jds.2018-15739.
  • Codex Alimentarius. 2001. Commission standards. In: Codex Standards for Honey, (1981/revised 1987/revised 2001). FAO–Rome; p. 1–7.
  • De Oliveira F, Coimbra J, De Oliveira E, Zuñiga A, Rojas E. 2016. Food protein-polysaccharide conjugates obtained via the maillard reaction: a review. Crit Rev Food Sci Nutr. 56(7):1108–1125. doi:10.1080/10408398.2012.755669.
  • Francisquini J, De Oliveira L, Pereira J, Stephani R, Í P, Da Silva P. 2016. Avaliação da intensidade da reação de Maillard, de atributos físico-químicos e análise de textura em doce de leite. Revista Ceres. 63(5):589–596. doi:10.1590/0034-737x201663050001.
  • Francisquini J, Rocha J, Martins E, Stephani R, Fonseca Da Silva P, Renhe I, Perrone ÍT, Fernandes De Carvalho A. 2019. 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. J Dairy Res. 86(4):477–482. doi:10.1017/S0022029919000815.
  • Fujimaru T, Park J, Lim J. 2012. Sensory Characteristics and Relative Sweetness of Tagatose and other sweeteners. J Food Sci. 77(9):9. doi:10.1111/j.1750-3841.2012.02844.x.
  • Gaze L, Costa M, Monteiro M, Lavorato J, Conte C, Raices R, Cruz A, Freitas M. 2015a. Dulce de Leche, a typical product of Latin America: characterisation by physicochemical, optical and instrumental methods. Food Chem. 169:471–477. doi:10.1016/j.foodchem.2014.08.017.
  • Gaze L, Oliveira B, Ferrao L, Granato D, Cavalcanti R, Conte C, Cruz A, Freitas M. 2015b. Preference mapping of dulce de leche commercialized in Brazilian markets. J Dairy Sci. 98(3):1443–1454. doi:10.3168/jds.2014-8470.
  • Gökmen V, Ö A, Köksel H, Acar J. 2007. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 104(3):1136–1142. doi:10.1016/j.foodchem.2007.01.008.
  • Gökmen V, Morales F. 2014. Processing Contaminants: hydroxymethylfurfural. Encyclopedia of Food Safety. 2:404–408.
  • Hamzalıoğlu A, Gökmen V. 2020. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling. Food Chem. 318:126467. doi:10.1016/j.foodchem.2020.126467.
  • Husøy T, Haugen M, Murkovic M, Jöbstl D, Stølen L, Bjellaas T, Rønningborg C, Glatt H, Alexander J. 2008. Dietary exposure to 5-hydroxymethylfurfural from Norwegian food and correlations with urine metabolites of short-term exposure. Food Chem Toxicol. 46(12):3697–3702. doi:10.1016/j.fct.2008.09.048.
  • Islam M, Khalil M, Islam M, Gan S. 2014. Toxic compounds in honey. J Appl Toxicol. 34(7):733–742. doi:10.1002/jat.2952.
  • Kanar Y, Mazı B. 2019. HMF formation, diastase activity and proline content changes in bee pollen dried by different drying methods. LWT, - J Food Sci Technol 113 (June). 113:108273. doi:10.1016/j.lwt.2019.108273.
  • Lee C, Chen K, Lin J, Chen Y, Chen Y, Wu J, Hsieh C. 2019. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci Technol. 93:271–280. September. doi:10.1016/j.tifs.2019.09.021.
  • Luna M, Aguilera J. 2014. Kinetics of Colour Development of Molten Glucose, Fructose and Sucrose at High Temperatures. Food Biophys. 9(1):61–68. doi:10.1007/s11483-013-9317-0.
  • Lund M, Ray C. 2017. Control of Maillard Reactions in Foods: strategies and Chemical Mechanisms. J Agric Food Chem. 65(23):4537–4552. doi:10.1021/acs.jafc.7b00882.
  • MacDonald R, Reitmeier C, MacDonald R, Reitmeier C. 2017. Chapter 6 – food Processing. Understanding Food Systems. doi:10.1016/B978-0-12-804445-2.00006-5
  • Malec L, Llosa R, Naranjo G, Vigo M. 2005. Loss of available lysine during processing of different dulce de leche formulations. Int J Dairy Technol. 58(3):164–168. doi:10.1111/j.1471-0307.2005.00202.x.
  • Martínez M, Troncoso E, Robert P, Quezada C, Zúñiga R. 2019. Time-Dependent Rheological Behavior of Starch-Based Thickeners and Herb Infusion Dispersions for Dysphagia Management. Starch/Staerke. 71(1–2):1–11. doi:10.1002/star.201700276.
  • Miao Y, Zhang H, Zhang L, Wu S, Sun J, Shan Y, Yuan Y. 2014. Acrylamide and 5-hydroxymethylfurfural formation in reconstituted potato chips during frying. J Food Sci Technol. 51(12):4005–4011. doi:10.1007/s13197-013-0951-9.
  • Morales F. 2008. Thermal Treatment: hydroxymethylfurfural (HMF) and Related Compounds. In: Lineback D, Stadler R, editors. Process-Induced Food Toxicants: occurrence, Formation. Mitigation, and Health Risks; p. 135–174.
  • National Toxicology Program (NTP), 2010. Toxicology and Carcinogenesis Studies of 5- (Hydroxymethyl) −2-Furfural in F344/N Rats and B6C3F1 Mice (Gavage Studies), Technical Report Series.
  • Nooshkam M, Varidi M, Bashash M. 2019. The Maillard reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chem. 275:644–660. doi:10.1016/j.foodchem.2018.09.083.
  • Oral R, Dogan M, Sarioglu K. 2014. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chem. 142:423–429. doi:10.1016/j.foodchem.2013.07.077.
  • Pastoriza De La Cueva S, Álvarez J, Végvári Á, Montilla-Gómez J, Cruz-López O, Delgado-Andrade C, Rufián-Henares J. 2017. Relationship between HMF intake and SMF formation in vivo: an animal and human study. Mol Nutr Food Res. 61(3):1600773. doi:10.1002/mnfr.201600773.
  • Perez C, Yaylayan V 2010. The Maillard reaction and food quality deterioration. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 70–94). Woodhead Publishing Limited.
  • R Core Team. 2019. R: a language and environment for statistical computing. URL. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org/
  • Ramírez A, García-Villanova B, Guerra-Hernández E. 2000. Hydroxymethylfurfural and methylfurfural content of selected bakery products. Food Res Int. 33(10):833–838. doi:10.1016/S0963-9969(00)00102-2.
  • Ranalli N, Andrés S, Califano A. 2012. Physicochemical and Rheological Characterization of “Dulce De Leche”. J Texture Stud. 43(2):115–123. doi:10.1111/j.1745-4603.2011.00321.x.
  • Ribeiro R, Carneiro C, Mársico E, Cunha F, Conte C, Mano S. 2012. Influência do binômio tempo e temperatura nos teores de hidroximetilfurfural em méis florais submetidos ao aquecimento. Cienc Agrotecnol. 36(2):204–209. doi:10.1590/S1413-70542012000200009.
  • Rodríguez A, Piagentini A, Rozycki S, Lema P, Pauletti M, Panizzolo L. 2013. Color development in dulce de leche-like system. Effect of Heating Time and pH Innotec. (7):38–42.
  • Rojo-Poveda O, Barbosa-Pereira L, Orden D, Stévigny C, Zeppa G, Bertolino M. 2020. Physical properties and consumer evaluation of cocoa bean shell-functionalized biscuits adapted for diabetic consumers by the replacement of sucrose with tagatose. Foods. 9(6):6. doi:10.3390/foods9060814.
  • Rouhi M, Mohammadi R, Mortazavian A, Sarlak Z. 2015. Combined effects of replacement of sucrose with d-tagatose and addition of different probiotic strains on quality characteristics of chocolate milk. Dairy Sci Technol. 95(2):115–133. doi:10.1007/s13594-014-0189-y.
  • Shapla U, Solayman M, Alam N, Khalil M, Gan S. 2018. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: effects on bees and human health. Chem Cent J. 12(1):1–18. doi:10.1186/s13065-018-0408-3.
  • Surh Y, Tannenbaum S. 1994. Activation of the Maillard Reaction Product 5-(Hydroxymethyl)furfural to Strong Mutagens via Allylic Sulfonation and Chlorination. Chem Res Toxicol. 7(3):313–318. doi:10.1021/tx00039a007.
  • Taylor T, Fasina O, Bell L. 2008. Physical properties and consumer liking of cookies prepared by replacing sucrose with tagatose. J Food Sci. 73(3):3. doi:10.1111/j.1750-3841.2007.00653.x.
  • Torrico D, Tam J, Fuentes S, Viejo C, Dunshea F. 2019. D-tagatose as a sucrose substitute and its effect on the physico-chemical properties and acceptability of strawberry-flavored yogurt. Foods. 8(7):7. doi:10.3390/foods8070256.
  • Van Der Fels-Klerx H, Capuano E, Nguyen H, Ataç B, Kocadaǧli T, Göncüoǧlu Taş N, Hamzalioǧlu A, Van Boekel M, Gökmen V. 2014. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: naCl and temperature-time profile effects and kinetics. Food Res Int. 57:210–217. doi:10.1016/j.foodres.2014.01.039.
  • Zappalà M, Fallico B, Arena E, Verzera A. 2005. Methods for the determination of HMF in honey: a comparison. Food Control. 16(3):273–277. doi:10.1016/j.foodcont.2004.03.006.
  • Zhang G, Zabed H, Yun J, Yuan J, Zhang Y, Wang Y, Qi X. 2020. Two-stage biosynthesis of D-tagatose from milk whey powder by an engineered Escherichia coli strain expressing L-arabinose isomerase from Lactobacillus plantarum. Bioresour.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.