210
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development of a molecularly imprinted microspheres-based microplate fluorescence method for detection of amantadine and rimantadine in chicken

, , , &
Pages 1136-1147 | Received 27 Jan 2021, Accepted 24 Mar 2021, Published online: 14 May 2021

References

  • Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Farahmand Nejad MA, Hormozi-Nezhad MR. 2019. Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances - A review. Anal Chim Acta. 1079:30–58. doi:10.1016/j.aca.2019.06.035.
  • Cai Y, He X, Cui PL, Liu J, Li ZB, Jia BJ, Zhang T, Wang JP, Yuan WZ. 2019. Preparation of a chemiluminescence sensor for multi-detection of benzimidazoles in meat based on molecularly imprinted polymer. Food Chem. 280:103–109. doi:10.1016/j.foodchem.2018.12.052.
  • Cenci L, Piotto C, Bettotti P, Bossi AM. 2018. Study on molecularly imprinted nanoparticle modified microplates for pseudo-ELISA assays. Talanta. 178:772–779. doi:10.1016/j.talanta.2017.10.018.
  • Chen C, Luo J, Li C, Ma M, Yu W, Shen J, Wang Z. 2018. Molecularly imprinted polymer as an antibody substitution in pseudo-immunoassays for chemical contaminants in food and environmental samples. J Agric Food Chem. 66(11):2561–2571. doi:10.1021/acs.jafc.7b05577.
  • Dong B, Li H, Mari GM, Yu X, Yu W, Wen K, Ke Y, Shen J, Wang Z. 2019a. Fluorescence immunoassay based on the inner-filter effect of carbon dots for highly sensitive amantadine detection in foodstuffs. Food Chem. 294:347–354. doi:10.1016/j.foodchem.2019.05.082.
  • Dong B, Li H, Sun J, Mari GM, Yu X, Ke Y, Li J, Wang Z, Yu W, Wen K, et al. 2019b. Development of a fluorescence immunoassay for highly sensitive detection of amantadine using the nanoassembly of carbon dots and MnO2 nanosheets as the signal probe. Sensor Actuat B. 286:214–221. doi:10.1016/j.snb.2019.01.100.
  • He G, Qiao J, Dong C, He C, Zhao L, Tian Y. 2008. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antivir Res. 77:72–76. doi:10.1016/j.antiviral.2007.08.007.
  • Higashi Y, Fujii Y. 2005. Simultaneous determination of the binding of amantadine and its analogues to synthetic melanin by liquid chromatography after precolumn derivatization with dansyl chloride. J Sep Sci. 43:213–217.
  • Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H , Wang Z , Sun X , Shen YD, Yang JY, Xu ZL. 2017. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: a review. TrAC-Trend Anal Chem. 88:25–40. doi:10.1016/j.trac.2016.12.010.
  • Liu G, She Y, Hong S, Wang J, Xu D. 2018. Development of ELISA-like fluorescence assay for melamine detection based on magnetic dummy molecularly imprinted polymers. Appl Sci. 8:560–572. doi:10.3390/app8040560.
  • Long F, Zhu A, Shi H, Wang H. 2014. Hapten-grafted graphene as a transducer for homogeneous competitive immunoassay of small molecules. Anal Chem. 86:2862–2866. doi:10.1021/ac500347n.
  • Ma M, Sun J, Chen Y, Wen K, Wang Z, Shen J, Zhang S, Ke Y, Wang Z. 2018. Highly sensitive SERS immunosensor for the detection of amantadine in chicken based on flower-like gold nanoparticles and magnetic bead separation. Food Chem Toxicol. 118:589–594. doi:10.1016/j.fct.2018.06.013.
  • Mattsson L, Xu J, Preininger C, Bui BTS, Haupt K. 2018. Competitive fluorescent pseudo-immunoassay exploiting molecularly imprinted polymers for the detection of biogenic amines in fish matrix. Talanta. 181:190–196. doi:10.1016/j.talanta.2018.01.010.
  • Mi T, Wang Z, Eremin SA, Shen J, Zhang S. 2013. Simultaneous determination of multiple (fluoro)quinolone antibiotics in food samples by a one-step fluorescence polarization immunoassay. J Agric Food Chem. 61:9347–9355. doi:10.1021/jf403972r.
  • [MOA] Ministry of Agriculture of China. 2019. National food safety standard-Determination of amantadine residues in animal derived food by liquid chromatography tandem mass spectrometric method. People’s Republic of China. Regulation No. 31660.5-2019.
  • Mohammed GI, Bashammakh AS, Alsibaai AA, Alwael H, El-Shahawi MS. 2016. A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs. TRAC-Trend Anal Chem. 78:84–94. doi:10.1016/j.trac.2016.02.007.
  • Moniz T, Nunes A, Silva AMG, Queirós C, Ivanova G, Gomes MS, Rangel M. 2013. Rhodamine labeling of 3-hydroxy-4-pyridinone iron chelators is an important contribution to target Mycobacterium avium infection. J Inorg Biochem. 121:156–166. doi:10.1016/j.jinorgbio.2013.01.002.
  • Nishikawa N, Nagai M, Moritoyo T, Yabe H, Nomoto M. 2009. Plasma amantadineconcentrations in patients with Parkinson’s disease. Parkinsonism Relat Disord. 15:351–353. doi:10.1016/j.parkreldis.2008.08.005.
  • Peng D, Wei W, Pan Y, Wang Y, Chen D, Liu Z, Wang X, Dai M, Yuan Z. 2017. Preparation of a monoclonal antibody against amantadine and rimantadine and development of an indirect competitive enzyme-linked immunosorbent assay for detecting the same in chicken muscle and liver. J Pharmaceu Biomed Anal. 133:56–63. doi:10.1016/j.jpba.2016.11.009.
  • Renkecz T, Horvath V. 2017. Preparation of Molecularly Imprinted Microspheres by Precipitation Polymerization. In: Tiller T, editor. Synthetic Antibodies: methods and Protocols. New York: Springer New York; p. 341–352.
  • Suarez-Rodriguez JL, Diaz-Garcia ME. 2001. Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers. Biosens Bioelectron. 16:955–961. doi:10.1016/S0956-5663(01)00243-3.
  • Turnipseed SB, Storey JM, Andersen WC, Filigenzi MS, Heise AS, Lohne JJ, Madson MR, Ceric O, Reimschuessel R. 2015. Determination and confirmation of the antiviral drug amantadine and its analogues in chicken jerky pet treats. J Agric Food Chem. 63(31):6968–6978. doi:10.1021/acs.jafc.5b02416.
  • Wang F, Zhang S, Sheng C, Zhao X, You J. 2015. Sensitive determination of amantadine in microdialysis samples from rat plasma by HPLC with fluorescence detection. J Liquid Chromatogr R T. 38:1622–1628. doi:10.1080/10826076.2015.1087026.
  • Wang Z, Wen K, Zhang X, Li X, Wang Z, Shen J, Ding S. 2018. New hapten synthesis, antibody production, and indirect competitive enzyme-linked immnunosorbent assay for amantadine in chicken muscle. Food Anal Methods. 11(1):302–308. doi:10.1007/s12161-017-1000-5.
  • Xu L, Peng S, Liu L, Song S, Kuang H, Xu C. 2016. Development of sensitive and fast immunoassays for amantadine detection. Food Agr Immunol. 27:678–688. doi:10.1080/09540105.2016.1148667.
  • Yun Y, Pan M, Fang G, Gu Y, Wen W, Xue R, Wang S. 2018. An electrodeposited molecularly imprinted quartz crystal microbalance sensor sensitized with AuNPs and rGO material for highly selective and sensitive detection of amantadine. RSC Adv. 8(12):6600–6607. doi:10.1039/C7RA09958D.
  • Yun Y, Pan M, Fang G, Yang Y, Guo T, Deng J, Liu B , Wang S. 2017. Molecularly imprinted electrodeposition o-aminothiophenol sensor for selective and sensitive determination of amantadine inanimal-derived foods. Sensor Actuat B. 238:32–39. doi:10.1016/j.snb.2016.06.165.
  • Zhang H, Yang S, Ruyck KD, Beloglazova N, Eremin SA, Saeger SD, Zhang S, Shen J, Wang Z. 2019. Fluorescence polarization assays for chemical contaminants in food and environmental analyses. TRAC-Trend Anal Chem. 114:293–313. doi:10.1016/j.trac.2019.03.013.
  • Zhang T, Liu J, Wang JP. 2018a. Preparation of molecularly imprinted polymer based chemiluminescence sensor for determination of amantadine and rimantadine in meat. Anal Methods. 10:5025–5031. doi:10.1039/C8AY01900B.
  • Zhang X, Tang Q, Mi T, Zhao S, Wen K, Guo L, Mi J, Zhang S, Shi W, Shen J, et al. 2018b. Dual-wavelength fluorescence polarization immunoassay to increase information content per screen: applications for simultaneous detection of total aflatoxins and family zearalenones in maize. Food Control. 87:100–108. doi:10.1016/j.foodcont.2017.12.002.
  • Zhao S, Li D, Qiu J, Wang M, Yang S, Chen D. 2014. Simultaneous determination of amantadine, rimantadine and chlorpheniramine in animal derived food by liquid chromatography-tandem mass spectrometry after fast sample preparation. Anal Methods. 6:7062–7067. doi:10.1039/C4AY00516C.
  • Zhou B, Zhang J, Fan J, Zhu L, Zhang Y, Jin J, Huang B. 2015. A new sensitive method for the detection of chloramphenicol in food using time resolved fluoroimmunoassay. Eur Food Res Technol. 240:619–625. doi:10.1007/s00217-014-2363-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.