311
Views
1
CrossRef citations to date
0
Altmetric
Articles

Development and applicability of a multi-residue method for dyes, including new residue markers, to detect drug misuse in aquaculture

, , , &
Pages 1332-1349 | Received 28 Jan 2021, Accepted 27 Mar 2021, Published online: 27 May 2021

References

  • Al-Salhi R, Abdul-Sada A, Lange A, Tyler CR, Hill EM. 2012. The xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent. Environ Sci Technol. 46(16):9080–9088. doi:10.1021/es3014453.
  • Amelin VG, Korotkov AI, Andoralov AM. 2017. Simultaneous determination of dyes of different classes in aquaculture products and spices using HPLC–high-resolution quadrupole time-of-flight mass spectrometry. J Anal Chem. 72(2):183–190. doi:10.1134/S1061934817020034.
  • Andersen WC, Casey CR, Schneider MJ, Turnipseed SB. 2015. Expansion of the scope of AOAC first action method 2012.25 - single-laboratory validation of triphenylmethane dye and leuco metabolite analysis in shrimp, tilapia, catfish, and salmon by LC-MS/MS. J AOAC Int. 98(3):636–648. doi:10.5740/jaoacint.14-264.
  • Andersen WC, Turnipseed SB, Karbiwnyk CM, Lee RH, Clark SB, Rowe WD, Madson MR, Miller KE. 2009. Multiresidue method for the triphenylmethane dyes in fish: malachite green, crystal (gentian) violet, and brilliant green. Anal Chim Acta. 637(1–2):279–289. doi:10.1016/j.aca.2008.09.041.
  • Arias M, Chevallier OP, Graham SF, Gasull-Gimenez A, Fodey T, Cooper KM, Crooks SR, Danaher M, Elliott CT. 2016. Metabolomics reveals novel biomarkers of illegal 5-nitromimidazole treatment in pigs. Further evidence of drug toxicity uncovered. Food Chem. 199:876–884. doi:10.1016/j.foodchem.2015.12.075.
  • Ascari J, Dracz S, Santos FA, Lima JA, Diniz MH, Vargas EA. 2012. Validation of an LC-MS/MS method for malachite green (MG), leucomalachite green (LMG), crystal violet (CV) and leucocrystal violet (LCV) residues in fish and shrimp. Food Addit Contam Part A. 29(4):602–608. doi:10.1080/19440049.2011.653695.
  • Chen J, Wei Z, Cao XY. 2019. QuEChERS pretreatment combined with ultra-performance liquid chromatography–tandem mass spectrometry for the determination of four veterinary drug residues in marine products. Food Anal Methods. 12:1055–1066. doi:10.1007/s12161-018-01431-1.
  • Dervilly-Pinel G, Chereau S, Cesbron N, Monteau F, Le Bizec B. 2015. LC-HRMS based metabolomics screening model to detect various β-agonists treatments in bovines. Metabolomics. 11(2):403–411. doi:10.1007/s11306-014-0705-3.
  • Dowling G, Mulder PP, Duffy C, Regan L, Smyth MR. 2007. Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 586(1–2):411–419. doi:10.1016/j.aca.2006.08.045.
  • Dubreil E, Laurentie M, Delmas JM, Danion M, Morin T, Hurtaud-Pessel D, Viel A, Sanders P, Verdon E. 2021. Tissue distribution, metabolism, and elimination of Victoria pure blue BO in rainbow trout: main metabolite as an appropriate residue marker. Chemosphere. 262. doi:10.1016/j.chemosphere.2020.127636.
  • Dubreil E, Mompelat S, Kromer V, Guitton Y, Danion M, Morin T, Hurtaud-Pessel D, Verdon E. 2019. Dye residues in aquaculture products: targeted and metabolomics mass spectrometric approaches to track their abuse. Food Chem. 294:355–367. doi:10.1016/j.foodchem.2019.05.056.
  • [EFSA] European Food Safety Authority. 2013. Guidance on methodological principles and scientific methods to be taken into account when establishing reference points for action (RPAs) for non-allowed pharmacologically active substances present in food of animal origin. EFSA J. 11(4):3195. doi:10.2903/j.efsa.2013.3265.
  • [EFSA] European Food Safety Authority. 2017. Penninks A, Baert K, Levorato S, Binaglia M. Dyes in aquaculture and reference points for action. EFSA J. 15:e04920. John Wiley & Sons, Ltd.
  • Eich J, Bohm DA, Holzkamp D, Mankertz J. 2020. Validation of a method for the determination of triphenylmethane dyes in trout and shrimp with superior extraction efficiency. Food Addit Contam Part A. 37(1):84–93. doi:10.1080/19440049.2019.1671611.
  • [EURL] European Union Reference Laboratory. 2020. Guidance on minimum method performance requirements (MMPRs) for specific pharmacologically active substance in specific animal matrices in EU Food Safety Regulations for VMP Residues in Food from Animal Origin | EURL.
  • [EC] European Commission. 2002. 2002/657/CE: Décision de la Commission du 12 août 2002 portant modalités d’application de la directive 96/23/CE du Conseil en ce qui concerne les performances des méthodes d’analyse et l’interprétation des résultats. L 221. OJ. 8–36.
  • [EC] European Commission. 2004. 2004/25/CE: Décision de la Commission du 22 décembre 2003 modifiant la décision 2002/657/CE en ce qui concerne la fixation de limites de performances minimales requises (LPMR) pour certains résidus dans les aliments d’origine animale. L 6. OJ. 38–39.
  • [EC] European Commission. 2010. Règlement (UE) no 37/2010 de la Commission du 22 décembre 2009 relatif aux substances pharmacologiquement actives et à leur classification en ce qui concerne les limites maximales de résidus dans les aliments d’origine animale. L 15. OJ. L 15. 1–72.
  • [EC] European Commission. 2019. Règlement (UE) 2019/1871 de la Commission du 7 novembre 2019 relatif aux valeurs de référence pour les substances pharmacologiquement actives non autorisées présentes dans les denrées alimentaires d’origine animale et abrogeant la Décision 2005/34/CE. L 289. OJ. 41–46.
  • Gaugain M, Mompelat S, Fourmond MP, Manceau J, Rolland JG, Laurentie M, Verdon E, Bellanger L, Hurtaud-Pessel D. 2019. A non-targeted LC-HRMS approach for detecting exposure to illegal veterinary treatments: the case of cephalosporins in commercial laying Hens. J Chromatogr A. 1599:161–171. doi:10.1016/j.chroma.2019.04.022.
  • Giaccone V, Cammilleri G, Macaluso A, Cicero N, Pulvirenti A, Vella A, Ferrantelli V. 2018. A LC-HRMS after QuEChERS cleanup method for the rapid determination of dye residues in fish products. Food Anal Methods. 11(3):625–634. doi:10.1007/s12161-017-1032-x.
  • Halme K, Lindfors E, Peltonen K. 2007. A confirmatory analysis of malachite green residues in rainbow trout with liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 845(1):74–79. doi:10.1016/j.jchromb.2006.07.048.
  • Hashimoto JC, Paschoal JAR, Queiroz SCN, Ferracini VL, Assalin MR, Reyes FGR. 2012. A simple method for the determination of malachite green and leucomalachite green residues in fish by a modified quechers extraction and LC/MS/MS. J AOAC Int. 95(3):913–922. doi:10.5740/jaoacint.11-140.
  • Hermo MP, Gómez-Rodríguez P, Barbosa J, Barrón D. 2013. Metabolomic assays of amoxicillin, cephapirin and ceftiofur in chicken muscle: application to treated chicken samples by liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal. 85:169–178. doi:10.1016/j.jpba.2013.07.023.
  • Hurtaud-Pessel D, Couëdor P, Verdon E. 2011. Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: development and validation. J Chromatogr A. 1218(12):1632–1645. doi:10.1016/j.chroma.2011.01.061.
  • Hurtaud-Pessel D, Couëdor P, Verdon E, Dowell D. 2013. Determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS: first action 2012.25. J AOAC Int. 96(5):1152–1157. doi:10.5740/jaoacint.13-142.
  • Junza A, Saurina J, Barrón D, Minguillón C. 2016. Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry. J Chromatogr A. 1460:92–99. doi:10.1016/j.chroma.2016.07.016.
  • Kaplan M, Olgun EO, Karaoglu O. 2014. A rapid and simple method for simultaneous determination of triphenylmethane dye residues in rainbow trouts by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1349:37–43. doi:10.1016/j.chroma.2014.04.091.
  • López-Gutiérrez N, Romero-González R, Plaza-Bolaños P, Martínez-Vidal JL, Garrido-Frenich A. 2013. Simultaneous and fast determination of malachite green, leucomalachite green, crystal violet, and brilliant green in seafood by ultrahigh performance liquid chromatography-tandem mass spectrometry. Food Anal Methods. 6(2):406–414. doi:10.1007/s12161-012-9456-9.
  • Peng T, Royer AL, Guitton Y, Le Bizec B, Dervilly-Pinel G. 2017. Serum-based metabolomics characterization of pigs treated with ractopamine. Metabolomics. 13:6. doi:10.1007/s11306-017-1212-0.
  • Plakas SM, El Said KR, Stehly GR, Gingerich WH, Allen JL. 1996. Uptake, tissue distribution, and metabolism of malachite green in the channel catfish [Lctalurus punctatus]. Can J Fish Aquat Sci. 53(6):1427–1433. doi:10.1139/f96-061.
  • Poe WE, Wilson RP. 1983. Absorption of malachite green by channel catfish. Progressive Fish-Culturist. 45(4):228–229. doi:10.1577/1548-8659(1983)45[228:AOMGBC]2.0.CO;2.
  • Reyns T, Belpaire C, Geeraerts C, Van Loco J. 2014. Multi-dye residue analysis of triarylmethane, xanthene, phenothiazine and phenoxazine dyes in fish tissues by ultra-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 953-954:92–101. doi:10.1016/j.jchromb.2014.02.002.
  • Roybal JE, Pfenning AP, Munns RK, Holland DC, Hurlbut JA, Long AR. 1995. Determination of malachite green and its metabolite, leucomalachite green, in catfish (Lctalurus punctatus) tissue by liquid chromatography with visible detection. J AOAC Int. 78(2):453–457. doi:10.1093/jaoac/78.2.453.
  • Srivastava S, Sinha R, Roy D. 2004. Toxicological effects of malachite green. Aquat Toxicol. 66(3):319–329. doi:10.1016/j.aquatox.2003.09.008.
  • Tarbin JA, Chan D, Stubbings G, Sharman M. 2008. Multiresidue determination of triarylmethane and phenothiazine dyes in fish tissues by LC-MS/MS. Anal Chim Acta. 625(2):188–194. doi:10.1016/j.aca.2008.07.018.
  • Verdon E, Andersen WC. 2017. Certain Dyes as pharmacologically active substances in fish farming and other aquaculture products. In: Chemical Analysis of Non‐antimicrobial Veterinary Drug Residues in Food. John Wiley & Sons, Inc.; pp. 497–548. doi:10.1002/9781118696781.ch9.
  • Verdon E, Bessiral M, Chotard MP, Couëdor P, Fourmond MP, Fuselier R, Gaugain M, Gautier S, Hurtaud-Pessel D, Laurentie M, et al. 2015. The monitoring of triphenylmethane dyes in aquaculture products through the European Union network of official control laboratories. J AOAC Int. 98(3):649–657. doi:10.5740/jaoacint.15-008.
  • Villar-Pulido M, Gilbert-Lopez B, Garcia-Reyes JF, Martos NR, Molina-Diaz A. 2011. Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry. Talanta. 85(3):1419–1427. doi:10.1016/j.talanta.2011.06.036.
  • Xie J, Peng T, Chen DD, Zhang QJ, Wang GM, Wang X, Guo Q, Jiang F, Chen D, Deng J. 2013. Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up. J Chromatogr B Analyt Technol Biomed Life Sci. 913-914:123–128. doi:10.1016/j.jchromb.2012.12.002.
  • Xu YJ, Tian XH, Zhang XZ, Gong XH, Liu HH, Zhang HJ, Huang H, Zhang LM. 2012. Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry. J Chromatogr Sci. 50(7):591–597. doi:10.1093/chromsci/bms054.
  • Yan L, Gong C, Zhang X, Zhang Q, Zhao M, Wang C. 2016. Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil. Environ Toxicol Pharmacol. 48:39–45. doi:10.1016/j.etap.2016.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.