162
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mechanistic evidence for the effect of sulphur-based additive: methionine, on acrylamide reduction

, &
Pages 1324-1331 | Received 04 Mar 2021, Accepted 25 Apr 2021, Published online: 27 May 2021

References

  • Abt E, Robin L, McGrath S, Srinivasan J, Dinovi M, Adachi Y, Chirtel S. 2019. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011-2015 data. Food Addit Contam A. 36(10):1–16. doi:10.1080/19440049.2019.1637548.
  • Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Arslan HO, Varol N, Zhu K. 2018. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol. 118:745–752. doi:10.1016/j.fct.2018.06.029.
  • Ahn JS, Castle L, Clarke DB, Lloyd AS, Philo MR, Speck DR. 2002. Verification of the findings of acrylamide in heated foods. Food Addit Contam. 19(12):1116–1124. doi:10.1080/0265203021000048214.
  • Augustine DA, Bent G-A. 2019. Reducing Acrylamide exposure: a review of the application of sulfur-containing compounds - a Caribbean outlook. European J Nutr Food Saf. 9(3):192–209. doi:10.9734/ejnfs/2019/v9i330058.
  • Bent G-A, Maragh P, Dasgupta T. 2012. Acrylamide in Caribbean foods–residual levels and their relation to reducing sugar and asparagine content. Food Chem. 133(2):451–457. doi:10.1016/j.foodchem.2012.01.067.
  • Bent G-A, Maragh P, Dasgupta T, Fairman RA, Grierson L. 2015. Kinetic and density functional theory (DFT) studies of in vitro reactions of acrylamide with the thiols: captopril, L-cysteine, and glutathione. Toxicol Res. 4(1):121–131. doi:10.1039/C4TX00070F.
  • Casado FJ, Sánchez AH, Montaño A. 2010. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 119(1):161–166. doi:10.1016/j.foodchem.2009.06.009.
  • Ciesarova Z, Kukurova K, Markova L. 2011. Successes and limitations in acrylamide mitigation efforts part 2: impact of interventions in cereal food processing on exposure. Food Technol. 22(4):25–27.
  • Claus A, Schreiter P, Weber A, Graeff S, Herrmann W, Claupein W, Schieber A, Carle R. 2006. Influence of agronomic factors and extraction rate on the acrylamide contents in yeast-leavened breads. J Agric Food Chem. 54(23):8968–8976. doi:10.1021/jf061936f.
  • Friedman M. 2003. Chemistry, biochemistry, and safety of acrylamide, A review. J Agric Food Chem. 51:4504–4526.
  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, et al. 2016. Gaussian 16, Rev. C.01. Wallingford (CT): Gaussian, Inc. https://gaussian.com/
  • Hidalgo FJ, Delgado RM, Zamora R. 2011. Positive interaction between amino and sulfhydryl groups for acrylamide removal. Food Res Int. 44(4):1083–1087. doi:10.1016/j.foodres.2011.03.013.
  • Höhne GWH, Hemminger WF, Flammersheim H-J. 2003. Differential scanning calorimetry: an introduction for practitioners. 2nd ed. Cham (Switzerland): Springer-Verlag; [accessed 2021 Jan 05]. https://www.springer.com/gp/book/9783540004677 .
  • Jiang X. 2019. Sulfur chemistry. Cham (Switzerland): Springer International Publishing; [accessed 2020 Dec 2]. https://www.springer.com/gp/book/9783030255978
  • Jin C, Wu X, Zhang Y. 2013. Relationship between antioxidants and acrylamide formation: a review. Food Res Int. 51(2):611–620. doi:10.1016/j.foodres.2012.12.047.
  • Kobayashi A, Gomikawa S, Yamazaki A, Sato S, Konishi T. 2014. Elimination of acrylamide by moderate heat treatment below 120°C with lysine and cysteine. Food Sci Technol Res. 20(5):979–985. doi:10.3136/fstr.20.979.
  • Kolek E, Simko P, Simon P. 2006. Effect of NaCl on the decrease of acrylamide content in a heat-treated model food matrix. J Food Nutr Res. 45:17.
  • Konings E, Baars A, Van Klaveren J, Spanjer M, Rensen P, Hiemstra M, Van Kooij J, Peters P. 2003. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem Toxicol. 41(11):1569–1579. doi:10.1016/S0278-6915(03)00187-X.
  • Leung K-S, Lin A, Tsang C, Yeung S. 2004. Acrylamide in Asian foods in Hong Kong. Food Addit Contam. 20(12):1105–1113. doi:10.1080/02652030310001620414.
  • LoPachin R, Ross J, Reid ML, Das S, Mansukhani S, Lehning E. 2002. Neurological evaluation of toxic axonopathies in rats: acrylamide and 2, 5-hexanedione. Neurotoxicol. 23(1):95–110. doi:10.1016/S0161-813X(02)00003-7.
  • Maleki M, Djazayeri A. 1968. Effect of baking and amino acid supplementation on the protein quality of Arabic bread. J Sci Food Agric. 19(8):449–451. doi:10.1002/jsfa.2740190807.
  • Schulz MR, Hertz-Picciotto I, Van Wijngaarden E, Hernandez J, Ball L. 2001. Dose-response relation between acrylamide and pancreatic cancer. Occup Environ Med. 58(9):609. doi:10.1136/oem.58.9.609.
  • [SND] Self-Nutrition Data. 2018. [accessed 2020 Mar 04]. https://nutritiondata.self.com/foods-002084000000000000000-1w.html .
  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert M-C, Riediker S. 2002. Food chemistry: acrylamide from Maillard reaction products. Nature 419(6906):449. doi:10.1038/419449a.
  • Tareke E, Rydberg P, Karlsson P, Ericksson S, Tornqvist M. 2002. Analysis of acrylamide, a carcinogen formed in heated food stuffs. J Agric Food Chem. 50(17):4998–5006. doi:10.1021/jf020302f.
  • Vally H, Misso NL, Madan V. 2009. Clinical effects of sulphite additives. Clin Exp Allergy. 39(11):1643–1651. doi:10.1111/j.1365-2222.2009.03362.x.
  • Van Boekel M. 2006. Formation of flavour compounds in the Maillard reaction. Biotechnol Adv. 24(2):230–233. doi:10.1016/j.biotechadv.2005.11.004.
  • Yanai T, Tew DP, Handy NC. 2004. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 393(1–3):51–57. doi:10.1016/j.cplett.2004.06.011.
  • Yu M, Ou S, Liumengzi D, Huang C, Zhang G. 2013. Effect of ten amino acids on elimination of acrylamide in a model reaction system. Afr J Food Sci. 7(9):329–333. doi:10.5897/AJFS2013.1031.
  • Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Eberhart BL, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP. 2003. Acrylamide formation mechanism in heated foods. J Agric Food Chem. 51(16):4782–4787. doi:10.1021/jf034180i.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.