536
Views
21
CrossRef citations to date
0
Altmetric
Articles

Synthesis of bimetallic core-shelled nanoparticles modified by 2-mercaptoethanol as SERS substrates for detecting ferbam and thiabendazole in apple puree

, & ORCID Icon
Pages 1386-1399 | Received 15 Mar 2021, Accepted 09 May 2021, Published online: 22 Jun 2021

References

  • Alsammarraie FK, Lin M, Mustapha A, Lin H, Chen X, Chen Y, Huang M. 2018. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem. 259:219–225. doi:10.1016/j.foodchem.2018.03.105.
  • Arnob MMP, Artur C, Misbah I, Mubeen S, Shih WC. 2019. 10×-enhanced heterogeneous nanocatalysis on a nanoporous gold disk array with high-density hot spots. ACS Appl Mater Interfaces. 11(14):13499–13506. doi:10.1021/acsami.8b19914.
  • Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. 2020. Nanofibrillar cellulose/Au@ Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchimica Acta. 187(7):1–11. doi:10.1007/s00604-020-04358-9.
  • Asgari S, Wu G, Aghvami SA, Zhang Y, Lin M. 2021. Optimisation using the finite element method of a filter-based microfluidic SERS sensor for detection of multiple pesticides in strawberry. Food Addit Contamin. 38(4):646–658. doi:10.1080/19440049.2021.1881624.
  • Aswathy B, Sony G, Gopchandran KG. 2014. Shell thickness-dependent plasmon coupling and creation of SERS hot spots in Au@Ag core-shell nanostructures. Plasmonics. 9(6):1323–1331. doi:10.1007/s11468-014-9745-9.
  • Chen X, Dong F, Liu X, Xu J, Li J, Li Y, Zheng Y. 2012. Enantioselective separation and determination of the dinotefuran enantiomers in rice, tomato and apple by HPLC. J Sep Sci. 35(2):200–205. doi:10.1002/jssc.201100823.
  • Choi S, Hwang J, Lee S, Lim DW, Joo H, Choo J. 2017. Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sens Actuators B Chem. 240:358–364.
  • Eom G, Kim H, Hwang A, Son HY, Choi Y, Moon J, Huh YM. 2017. Nanogap‐rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis. Adv Funct Mater. 27(37):1701832. doi:10.1002/adfm.201701832.
  • Feng J, Hu Y, Grant E, Lu X. 2018. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 239:816–822. doi:10.1016/j.foodchem.2017.07.014.
  • Fu G, Sun D-W, Pu H, Wei Q. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta. 195:841–849. doi:10.1016/j.talanta.2018.11.114.
  • Gao J, Huang X, Liu H, Zan F, Ren J. 2012. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir. 28(9):4464–4471. doi:10.1021/la204289k.
  • Guo H, Xing B, He L. 2016. Development of a filter-based method for detecting silver nanoparticles and their heteroaggregation in aqueous environments by surface-enhanced Raman spectroscopy. Environ Pollut. 211:198–205. doi:10.1016/j.envpol.2015.12.049.
  • Guo L, Wu J, Xing F, Liu W, Hao L, Wang C, Wang Z. 2020. Graphene intercalated with carbon nanosphere: a novel solid-phase extraction sorbent for five carbamate pesticides. Microchimica Acta. 187(9):1–10. doi:10.1007/s00604-020-04497-z.
  • Gupta N, Dhawan A. 2018. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response. Opt Express. 26(14):17899–17915. doi:10.1364/OE.26.017899.
  • He H, Sun D-W, Pu H, Huang L. 2020. Bridging Fe3O4@ Au nanoflowers and Au@ Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chem. 324:126832. doi:10.1016/j.foodchem.2020.126832.
  • He L, Chen T, Labuza TP. 2014. Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem. 148:42–46. doi:10.1016/j.foodchem.2013.10.023.
  • Hong J, Kawashima A, Hamada N. 2017. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Appl Surf Sci. 407:440–446. doi:10.1016/j.apsusc.2017.02.232.
  • Hu B, Pu H, Sun D-W. 2021. Multifunctional cellulose based substrates for SERS smart sensing: principles, applications and emerging trends for food safety detection. Trends in Food Sci Technol. 110:304–320. doi:10.1016/j.tifs.2021.02.005
  • Hu B, Sun D-W, Pu H, Wei Q. 2020a. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method. Talanta. 217:120998. doi:10.1016/j.talanta.2020.120998
  • Hu B, Sun D-W, Pu H, Wei Q. 2020b. A dynamically optical and highly stable pNIPAM@ Au NRs nanohybrid substrate for sensitive SERS detection of malachite green in fish fillet. Talanta. 218:121188. doi:10.1016/j.talanta.2020.121188
  • Huang L, Sun D-W, Wu Z, Pu H, Wei Q. 2021. Reproducible, shelf-stable, and bioaffinity SERS nanotags Inspired by multivariate polyphenolic chemistry for bacterial identification. Analytica Chimica Acta. 1167:338570. doi:10.1016/j.aca.2021.338570
  • Hussain A, Pu H, Sun D-W. 2020d. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 229:117994. doi:10.1016/j.saa.2019.117994
  • Hussain A, Pu H, Hu B, Sun D-W. 2021a. Au@ Ag-TGANPs based SERS for facile screening of thiabendazole and ferbam in liquid milk. Spectrochim Acta A Mol Biomol Spectrosc. 245:118908. doi:10.1016/j.saa.2020.118908.
  • Hussain A, Pu H, Sun D-W. 2019a. Measurements of lycopene contents in fruit: a review of recent developments in conventional and novel techniques. Crit Rev Food Sci Nutr. 59(5):758–769. doi:10.1080/10408398.2018.1518896.
  • Hussain A, Pu H, Sun D-W. 2020b. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS. J Food Measure Charact. 14:2021–2029. doi:10.1007/s11694-020-00448-7.
  • Hussain A, Sun D-W, Pu H. 2019b. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Addit Contam Part A. 36(6):851–862. doi:10.1080/19440049.2019.1591643.
  • Hussain A, Sun D-W, Pu H. 2020c. Bimetallic core shelled nanoparticles (Au@ AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Food Chem. 317:126429. doi:10.1016/j.foodchem.2020.126429.
  • Hussain N, Pu H, Hussain A, Sun D-W. 2020a. Rapid detection of ziram residues in apple and pear fruits by SERS based on octanethiol functionalized bimetallic core-shell nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 236:118357. doi:10.1016/j.saa.2020.118357.
  • Hussain N, Pu H, Sun D-W. 2021b. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Food Chem. 350:129025. doi:10.1016/j.foodchem.2021.129025.
  • Jayan H, Pu H, Sun D-W. 2020. Recent development in rapid detection techniques for microorganism activities in food matrices using bio-recognition: a review. Trends Food Sci Technol. 95:233–246. doi:10.1016/j.tifs.2019.11.007.
  • Kim NH, Kim S, Choi M, Park HH, Kim NH, Park SY, Lee SY. 2018. Combination of periodic hybrid nanopillar arrays and gold nanorods for improving detection performance of surface-enhanced Raman spectroscopy. Sens Actuators B Chem. 258:18–24. doi:10.1016/j.snb.2017.11.065.
  • Li D, Zhu Z, Sun D-W. 2020. Visualization of the in situ distribution of contents and hydrogen bonding states of cellular level water in apple tissues by confocal Raman microscopy. Analyst. 145(3):897–907. doi:10.1039/c9an01743g.
  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M. 2017. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym. 157:643–650. doi:10.1016/j.carbpol.2016.10.031.
  • Luo H, Huang Y, Lai K, Rasco BA, Fan Y. 2016. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control. 68:229–235. doi:10.1016/j.foodcont.2016.04.003.
  • Mazloomi‐Rezvani M, Salami‐Kalajahi M, Roghani‐Mamaqani H, Pirayesh A. 2018. Effect of surface modification with various thiol compounds on colloidal stability of gold nanoparticles. Appl Organomet Chem. 32(2):e4079. doi:10.1002/aoc.4079.
  • Mekonnen ML, Chen CH, Osada M, Su WN, Hwang BJ. 2020. Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochim Acta A Mol Biomol Spectrosc. 225:117484. doi:10.1016/j.saa.2019.117484.
  • Natan MJ. 2006. Concluding remarks surface enhanced Raman scattering. Faraday Discuss. 132:321–328. doi:10.1039/b601494c.
  • Nekvapil F, Brezestean I, Barchewitz D, Glamuzina B, Chiş V, Pinzaru SC. 2018. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 242:560–567. doi:10.1016/j.foodchem.2017.09.105.
  • Neouze MA, Schubert U. 2008. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte Für Chemie-Chem Monthly. 139(3):183–195. doi:10.1007/s00706-007-0775-2.
  • Pano-Farias NS, Ceballos-Magaña SG, Muniz-Valencia R, Gonzalez J. 2017. Validation and assessment of matrix effect and uncertainty of a gas chromatography coupled to mass spectrometry method for pesticides in papaya and avocado samples. J Food Drug Anal. 25(3):501–509. doi:10.1016/j.jfda.2016.09.005.
  • Pei L, Huang Y, Li C, Zhang Y, Rasco BA, Lai K. 2014. Detection of triphenylmethane drugs in fish muscle by surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanoparticles. J Nanomater. 2014:1–8. doi:10.1155/2014/730915.
  • Pu H, Xiao W, Sun D-W. 2017. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci Technol. 70:114–126. doi:10.1016/j.tifs.2017.10.001.
  • Restaino SM, White IM. 2019. A critical review of flexible and porous SERS sensors for analytical chemistry at the point-of-sample. Anal Chim Acta. 1060:17–29. doi:10.1016/j.aca.2018.11.057.
  • Sinha SN, Rao MVV, Vasudev K, Odetokun M. 2012. A liquid chromatography mass spectrometry-based method to measure organophosphorous insecticide, herbicide and non-organophosphorous pesticide in grape and apple samples. Food Control. 25(2):636–646. doi:10.1016/j.foodcont.2011.11.031.
  • Sun D-W, Huang L, Pu H, Ma J. 2021. Introducing reticular chemistry into agrochemistry. Chem Soc Rev. 50 (2):1070–1110. doi:10.1039/c9cs00829b.
  • Tang H, Zhu C, Meng G, Wu N. 2018. Surface-enhanced Raman scattering sensors for food safety and environmental monitoring. J Electrochem Soc. 165(8):B3098. doi:10.1149/2.0161808jes.
  • Tegegne WA, Su WN, Tsai MC, Beyene AB, Hwang BJ. 2020. Ag nanocubes decorated 1T-MoS2 nanosheets SERS substrate for reliable and ultrasensitive detection of pesticides. Appl Mater Today. 21:100871. doi:10.1016/j.apmt.2020.100871.
  • Wang K, Li S, Petersen M, Wang S, Lu X. 2018. Detection and characterization of antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy. Nanomaterials. 8(10):762. doi:10.3390/nano8100762.
  • Wang K, Sun D-W, Pu H, Wei Q. 2019a. Shell thickness-dependent Au@ Ag nanoparticles aggregates for high-performance SERS applications. Talanta. 195:506–515. doi:10.1016/j.talanta.2018.11.057.
  • Wang K, Sun D-W, Pu H, Wei Q. 2019c. Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta. 191:449–456. doi:10.1016/j.talanta.2018.08.005.
  • Wang K, Sun D-W, Pu H, Wei Q. 2020a. A rapid dual-channel readout approach for sensing carbendazim with 4-aminobenzenethiol-functionalized core–shell Au@ Ag nanoparticles. Analyst. 145(5):1801–1809. doi:10.1039/C9AN02185J.
  • Wang K, Sun D-W, Pu H, Wei Q. 2020b. Two-dimensional Au@ Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Food Chem. 310:125923. doi:10.1016/j.foodchem.2019.125923.
  • Wang K, Sun D-W, Pu H, Wei Q. 2021. Polymer multilayers enabled stable and flexible Au@ Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta. 223:121782. doi:10.1016/j.talanta.2020.121782.
  • Wang K, Sun D-W, Pu H, Wei Q, Huang L. 2019b. Stable, flexible, and high-performance SERS chip enabled by a ternary film-packaged plasmonic nanoparticle array. ACS Appl Mater Interfaces. 11(32):29177–29186. doi:10.1021/acsami.9b09746.
  • Watanabe E, Miyake S, Yogo Y. 2013. Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments. J Agric Food Chem. 61(51):12459–12472. doi:10.1021/jf403801h.
  • Wei W, Du Y, Zhang L, Yang Y, Gao Y. 2018. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J Mater Chem C. 6(32):8793–8803. doi:10.1039/C8TC01741G.
  • Wu L, Pu H, Huang L, Sun D-W. 2020. Plasmonic nanoparticles on metal-organic framework: a versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chem. 328:127105. doi:10.1016/j.foodchem.2020.127105.
  • Wu Z, Pu H, Sun D-W. 2021. Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: principles and recent applications. Trends Food Sci Technol. 110:393–404. doi:10.1016/j.tifs.2021.02.013.
  • Xiao M, Xie K, Dong X, Wang L, Huang C, Xu F, Tang Y. 2019. Ultrasensitive detection of avian influenza A (H7N9) virus using surface-enhanced Raman scattering-based lateral flow immunoassay strips. Anal Chim Acta. 1053:139–147. doi:10.1016/j.aca.2018.11.056.
  • Xuan T, Gao Y, Cai Y, Guo X, Wen Y, Yang H. 2019. Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: an application for sensitive detection of thiabendazole. Sens Actuators B Chem. 293:289–295. doi:10.1016/j.snb.2019.05.017.
  • Zhang D, Pu H, Huang L, Sun D-W. 2021. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: fundamentals and recent applications. Trends Food Sci Technol. 109:690–701. doi:10.1016/j.tifs.2021.01.058.
  • Zhang W, Ma J, Sun D-W. 2020. Raman spectroscopic techniques for detecting structure and quality of frozen foods: principles and applications. Crit Rev Food Sci Nutr. 1–17. doi:10.1080/10408398.2020.1828814.
  • Zhou H, Yang D, Mircescu NE, Ivleva NP, Schwarzmeier K, Wieser A, Haisch C. 2015. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles. Microchimica Acta. 182(13–14):2259–2266. doi:10.1007/s00604-015-1570-0.
  • Zhou X, Pu H, Sun D-W. 2020. DNA functionalized metal and metal oxide nanoparticles: principles and recent advances in food safety detection. Crit Rev Food Sci Nutr. 1–20. doi:10.1080/10408398.2020.1809343.
  • Zhu C, Wang X, Shi X, Yang F, Meng G, Xiong Q, Wu N. 2017. Detection of dithiocarbamate pesticides with a sponge like surface-enhanced Raman scattering substrate made of reduced graphene oxide-wrapped silver nanocubes. ACS Appl Mater Interfaces. 9(45):39618–39625. doi:10.1021/acsami.7b13479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.