248
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultrasonic-assisted dispersive liquid–liquid microextraction based on hydrophilic deep eutectic solvents: Application to lead and cadmium monitoring in water and food samples

ORCID Icon, ORCID Icon &
Pages 1963-1973 | Received 12 Jul 2022, Accepted 24 Sep 2022, Published online: 26 Oct 2022

References

  • Aboufazeli F, Reza H, Zhad LZ, Sadeghi O, Karimi M, Najafi E. 2013. Novel ion imprinted polymer magnetic mesoporous silica nano-particles for selective separation and determination of lead ions in food samples. Food Chem. 141(4):3459–3465. doi:10.1016/j.foodchem.2013.06.062
  • Adhami K, Asadollahzadeh H, Ghazizadeh M. 2020. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL based dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometery. J Food Compos Anal. 89:103457. doi:10.1016/j.jfca.2020.103457
  • Aguirre MA, Baile P, Vidal L, Canals A. 2019. Metal applications of liquid-phase microextraction. Trends Anal Chem. 112:241–247. doi:10.1016/j.trac.2018.11.032
  • Aleluia ACM, de Santana FA, Brandao GC, Ferreira SLC. 2017. Sequential determination of cadmium and lead in organic pharmaceutical formulations using high-resolution continuum source graphite furnace atomic absorption spectrometry. Microchem J. 130:157–161. doi:10.1016/j.microc.2016.09.001
  • Altunay N, Elik A, Gurkan R. 2019. Vortex assisted-ionic liquid based dispersive liquid-liquid microextraction of low levels of nickel and cobalt in chocolate-based samples and their determination by FAAS. Microchem J. 147:277–285. doi:10.1016/j.microc.2019.03.037
  • Altunay N, Hazer B, Tuzen M, Elik A. 2021. A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chem. 359:129923. doi:10.1016/j.foodchem.2021.129923
  • Arpa C, Arıdaşır I. 2019. Ultrasound assisted ion pair-based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegetable and herb samples. Food Chem. 284:16–22. doi:10.1016/j.foodchem.2019.01.092
  • Biata NR, Nyaba L, Ramontja J, Mketo N, Nomngongo PN. 2017. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction. Food Chem. 237:904–911. doi:10.1016/j.foodchem.2017.06.058
  • Chaikhan P, Udnan Y, Ampiah-Bonney RJ, Chaiyasith WC. 2022. Fast sequential multi element analysis of lead and cadmium in canned food samples using effervescent tablet-assisted switchable solvent based liquid phase microextraction (EA-SS-LPME) coupled with high-resolution continuum source flame atomic absorption spectrometry (HR-CS-FAAS). Food Chem. 375:131857. doi:10.1016/j.foodchem.2021.131857
  • Chen S, Yan J, Li J, Lu D. 2019. Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co (II), Ni (II), Mn (II) and Cd (II) followed by ICP-MS determination. Microchem J. 147:232–238. doi:10.1016/j.microc.2019.02.066
  • Coelho LM, Arruda MAZ. 2005. Preconcentration procedure using cloud point extraction in the presence of electrolyte for cadmium determination by flame atomic absorption spectrometry. Spectrochim Acta B. 60(5):743–748. doi:10.1016/j.sab.2005.02.016
  • Elik A, Demirbaş A, Altunay N. 2022. Experimental design of ligandless sonication-assisted liquid- phases microextraction based on hydrophobic deep eutectic solvents for accurate determination of Pb (II) and Cd (II) from waters and food samples at trace levels. Food Chem. 371:131138. doi:10.1016/j.foodchem.2021.131138
  • Feist B, Sitko R. 2018. Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem. 249:38–44. doi:10.1016/j.foodchem.2017.12.082
  • Goodlaxson B, Curtzwiler G, Vorst K. 2018. X-ray fluorescence analysis of antimony content in extruded polyethylene terephthalate food packaging below the infinite thickness. Food Anal Methods. 11(6):1722–1727. doi:10.1007/s12161-018-1165-6
  • Huang L, Huang W, Shen R, Shuai Q. 2020. Chitosan/thiol functionalized metal–organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem. 330:127212. doi:10.1016/j.foodchem.2020.127212
  • Ji Y, Zhao M, Li A, Zhao L. 2021. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem J. 164:105974. doi:10.1016/j.microc.2021.105974
  • Kumar NS, Imran K, Harinath Y, Seshaiah K. 2020. Synthesis and characterisation of new hybrid sorbent, 2, 2’-dipyridyl ketone functionalised SBA 15 and its application in solid-phase extraction of Pb (II) & Cd (II) from environmental samples. Int J Environ Anal Chem. 1–20. doi:10.1080/03067319.2020.1828384
  • Langston W. 2018. Toxic effects of metals and the incidence of metal pollution in marine ecosystems, Heavy metals in the marine environment. Boca Raton: CRC Press; p. 101–120.
  • Lemes LFR, Tarley CRT. 2021. Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry. Food Chem. 357:129695. doi:10.1016/j.foodchem.2021.129695
  • Li G, Row KH. 2019. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. TrAc Trends Anal Chem. 120:115651. doi:10.1016/j.trac.2019.115651
  • Maslov MM, Elik A, Demirbaş A, Katin KP, Altunay N. 2020. Theoretical and experimental studies aimed at the development of vortex-assisted supramolecular solvent microextraction for determination of nickel in plant samples by FAAS. Microchem J. 159:105491. doi:10.1016/j.microc.2020.105491
  • Nomngongo PN, Ngila JC. 2015. Multivariate optimization of dual-bed solid phase extraction for preconcentration of Ag, Al, As and Cr in gasoline prior to inductively coupled plasma optical emission spectrometric determination. Fuel. 139:285–291. doi:10.1016/j.fuel.2014.08.046
  • Nordberg GF, Sandstrom B, Becking G, Goyer RA. 2002. Essentiality and toxicity of metals. In: Sarkar B, editor. Heavy metals in the environment. Boca Raton: CRC Press; p. 1–29.
  • Nyaba L, Nomngongo PN. 2020. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food Chem. 322:126749. doi:10.1016/j.foodchem.2020.126749
  • Ohki A, Nakajima T, Hirakawa S, Hayashi K, Takanashi H. 2016. A simple method of the recovery of selenium from food samples for the determination by ICP-MS. Microchem J. 124:693–698. doi:10.1016/j.microc.2015.10.012
  • Rajabi M, Hemmati M. 2021. Comparison of two polythiophene nanocomposites-based dispersive micro solid-phase extraction procedures coupled with salt-induced/magnetic separations for efficient preconcentration of toxic metal ions from food samples. J Mol Liq. 324:114997. doi:10.1016/j.molliq.2020.114997
  • Sadeghi S, Davami A. 2019. A rapid dispersive liquid-liquid microextraction based on hydrophobic deep eutectic solvent for selective and sensitive preconcentration of thorium in water and rock samples: a multivariate study. J Mol Liq. 291:111242. doi:10.1016/j.molliq.2019.111242
  • Shishov A, Volodina N, Semenova E, Navolotskaya D, Ermakov S, Bulatov A. 2022. Reversed-phase dispersive liquid-liquid microextraction based on decomposition of deep eutectic solvent for the determination of lead and cadmium in vegetable oil. Food Chem. 373(Pt B):131456. doi:10.1016/j.foodchem.2021.131456
  • Sixto A, Mollo A, Knochen M. 2019. Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. J Food Compos Anal. 82:103229. doi:10.1016/j.jfca.2019.06.001
  • Sorouraddin SM, Farajzadeh MA, Dastoori H. 2020. Development of a dispersive liquid-liquid microextraction method based on a ternary deep eutectic solvent as chelating agent and extraction solvent for preconcentration of heavy metals from milk samples. Talanta. 208:120485. doi:10.1016/j.talanta.2019.120485
  • Suo L, Dong X, Gao X, Xu J, Huang Z, Ye J, Lu X, Zhao L. 2019. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchem J. 149:104039. doi:10.1016/j.microc.2019.104039
  • Teran-Baamonde J, Soto-Ferreiro RM, Carlosena A, Andrade JM, Prada D. 2018. Determination of cadmium in sediments by diluted HCI extraction and isotope dilution ICP-MS. Talanta. 186:272–278. doi:10.1016/j.talanta.2018.04.054
  • Vanda H, Dai Y, Wilson EG, Verpoorte R, Choi YH. 2018. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. CR Chim. 21(6):628–638. doi:10.1016/j.crci.2018.04.002
  • World Health Organization. 2008. Drinking Water Quality: Third Edition incorporating the first and second addenda. Vol. 1. Recommendations. Geneva: WHO.
  • Xie C, Huang X, Wei S, Xiao C, Cao J, Wang Z. 2020. Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd2+ and Pb2+ in soil and food. J Cleaner Prod. 262:121387. doi:10.1016/j.jclepro.2020.121387
  • Yan C, Yang X, Li Z, Liu Y, Yang S, Deng Q, Wen X. 2021. Switchable hydrophilicity solvent-based preconcentration for ICP-OES determination of trace lead in environmental samples. Microchem J. 168:106529. doi:10.1016/j.microc.2021.106529

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.