379
Views
2
CrossRef citations to date
0
Altmetric
Review

Adoption of analytical technologies for verification of authenticity of halal foods – a review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1906-1932 | Received 18 Jul 2022, Accepted 05 Oct 2022, Published online: 17 Oct 2022

References

  • Ab Mutalib NA, Jaswir I, Akmeliawati R. 2013. IIUM-fabricated portable electronic nose for halal authentication in beverages. Proceedings of 2013 5th International Conference on Information and Communication Technology for the Muslim World; Mar p. 26–27. Rabat, Morocco: International Islamic University Malaysia.
  • Abd-Elghany M, Klapötke TM. 2018. A review on differential scanning calorimetry technique and its importance in the field of energetic materials. Phys Sci Rev. 3(4):1–14.
  • Abidin ZZ, Omar FN, Biak DRA, Man YC. 2016. Alternative for rapid detection and screening of pork, chicken, and beef using dielectric properties in the frequency of 0.5 to 50 GHz. Int J Food Prop. 19(5):1127–1138. doi:10.1080/10942912.2015.1058274
  • Adekunle B, Filson G. 2020. Understanding halal food market: resolving asymmetric information. Food Ethics. 5(1–2):1–22. doi:10.1007/s41055-020-00072-7
  • Ahda M, Guntarti A, Kusbandari A, Melianto Y. 2021. Halal food analysis using GC-MS combined with principal component analysis (PCA) based on saturated and unsaturated fatty acid composition. Songklanakarin J Sci Technol. 43(2):352–355. doi:10.14456/sjst-psu.2021.46
  • Ahmed MU, Hasan Q, Mosharraf Hossain M, Saito M, Tamiya E. 2010. Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control. 21(5):599–605. doi:10.1016/j.foodcont.2009.09.001
  • Aida AA, Man YBC, Wong CMVL, Raha AR, Son R. 2005. Analysis of raw meats and fats of pigs using polymerase chain reaction for halal authentication. Meat Sci. 69(1):47–52. doi:10.1016/j.meatsci.2004.06.020
  • Ali ME, Mustafa S, Hashim U, Che Man YB, Foo KL. 2012. Nanobioprobe for the determination of pork adulteration in burger formulations. J Nanomter. 2012:1–7. doi:10.1155/2012/832387
  • Ali ME, Razzak MA, Hamid SBA, Rahman MM, Amin MA, Rashid NRA. Asing -. 2015. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem. 177:214–224. doi:10.1016/j.foodchem.2014.12.098
  • Alikord M, Momtaz H, Keramat J, Kadivar M, Rad AH. 2018. Species identification and animal authentication in meat products: a review. Food Measure. 12(1):145–155. doi:10.1007/s11694-017-9625-z
  • Al-Kahtani HA, Ismail EA, Asif Ahmed M. 2017. Pork detection in binary meat mixtures and some commercial food products using conventional and real-time PCR techniques. Food Chem. 219:54–60. doi:10.1016/j.foodchem.2016.09.108
  • Ambali AR, Bakar AN. 2014. People’s awareness on halal foods and products: potential issues for policy-makers. Procedia – Soc Behav Sci. 121:3–25. doi:10.1016/j.sbspro.2014.01.1104
  • Ashbrook SE, Hodgkinson P. 2018. Perspective: current advances in solid-state NMR spectroscopy. J Chem Phys. 149(4):1–14.
  • Awin T, Mediani A, Shaari K, Faudzi SMM, Sukari MAH, Lajis NH, Abas F. 2016. Phytochemical profiles and biological activities of Curcuma species subjected to different drying methods and solvent systems: NMR-based metabolomics approach. Ind Crops Prod. 94:342–352. doi:10.1016/j.indcrop.2016.08.020
  • Aydin S. 2015. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 72:4–15. doi:10.1016/j.peptides.2015.04.012
  • Azilawati MI, Hashim DM, Jamilah B, Amin I. 2015. RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins. Food Chem. 172:368–376. doi:10.1016/j.foodchem.2014.09.093
  • Azir M, Abbasiliasi S, Ibrahim TAT, Manaf YNA, Sazili AQ, Mustafa S. 2017. Detection of lard in cocoa butter—its fatty acid composition, triacylglycerol profiles, and thermal characteristics. Foods. 6(11):98. doi:10.3390/foods6110098
  • Bajinka O, Ozdemir G. 2017. The validity of singleplex and multiplex real time PCR detection and quantification of waterborne pathogens from domestic to industrial water. Res J Pharm Biol Chem Sci. 3(1):25–34.
  • Banerjee R, Jaiswal A. 2018. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst. 143(9):1970–1996. doi:10.1039/c8an00307f
  • Basri KN, Hussain MN, Bakar J, Sharif Z, Khir MFA, Zoolfakar AS. 2017. Classification and quantification of palm oil adulteration via portable NIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 173:335–342. doi:10.1016/j.saa.2016.09.028
  • Bi A, Nakajima C, Fukushima Y, Tamaru A, Sugawara I, Kimura A, Kawahara R, Hu Z, Suzuki YA. 2012. Rapid loop-mediated isothermal amplification assay targeting hspX for the detection of Mycobacterium tuberculosis complex. Jpn J Infect Dis. 65(3):247–251. doi:10.7883/yoken.65.247
  • Biliaderis CG. 1983. Differential scanning calorimetry in food research-A review. Food Chem. 10(4):239–265. doi:10.1016/0308-8146(83)90081-X
  • Boeker P. 2014. On ‘Electronic Nose’ methodology. Sens Actuators B Chem. 204:2–17. doi:10.1016/j.snb.2014.07.087
  • Bunney J, Williamson S, Atkin D, Jeanneret M, Cozzolino D, Chapman J, Power A, Chandra S. 2017. The use of electrochemical biosensors in food analysis. Curr Res Nutr Food Sci. 5(3):183–195. doi:10.12944/CRNFSJ.5.3.02
  • Cahyadi M, Wibowo T, Pramono A, Abdurrahman ZH. 2020. A novel multiplex-PCR assay to detect three non-halal meats contained in meatball using mitochondrial 12s rRNA gene. Food Sci Anim Resour. 40(4):628–635. doi:10.5851/kosfa.2020.e40
  • Cai S, Kong F, Xu S. 2020. Detection of porcine-derived ingredients from adulterated meat based on real-time loop-mediated isothermal amplification. Mol Cell Probes. 53:101609. doi:10.1016/j.mcp.2020.101609
  • Chandrasekaran I, Panigrahi SS, Ravikanth L, Singh CB. 2019. Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: an Overview. Food Anal Methods. 12(11):2438–2458. doi:10.1007/s12161-019-01609-1
  • Che Man YB, Gan HL, NorAini I, Nazimah SAH, Tan CP. 2005. Detection of lard adulteration in RBD palm olein using an electronic nose. Food Chem. 90(4):829–835. doi:10.1016/j.foodchem.2004.05.062
  • Chen FC, Hsieh YHP. 2000. Detection of pork in heat-processed meat products by monoclonal antibody-based ELISA. J AOAC Int. 83(1):79–85. doi:10.1093/jaoac/83.1.79
  • Chen FC, Hsieh YHP, Bridgman RC. 2002. Monoclonal antibodies against troponin I for the detection of rendered muscle tissues in animal feedstuffs. Meat Sci. 62(4):405–412. doi:10.1016/S0309-1740(02)00029-3
  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360(6387):436–439. doi:10.1126/science.aar6245
  • Chikuni K, Ozutsumi K, Koishikawa T, Kato S. 1990. Species identification of cooked meats by DNA hybridization assay. Meat Sci. 27(2):119–128. doi:10.1016/0309-1740(90)90060-J
  • Chin ST, Che Man YB, Tan CP, Hashim DM. 2009. Rapid profiling of animal-derived fatty acids using fast GC × GC coupled to Time-of-flight mass spectrometry. J Americ Oil Chem Soc. 86(10):949–958. doi:10.1007/s11746-009-1427-y
  • Coskun O. 2016. Separation techniques: chromatography. North Clin Istanb. 3(2):156–160. doi:10.14744/nci.2016.32757
  • Cozzolino D. 2014. An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals. Food Res Int. 60:262–265. doi:10.1016/j.foodres.2013.08.034
  • Curulli A. 2021. Electrochemical biosensors in food safety: challenges and perspectives. Molecules. 26(10):2940. doi:10.3390/molecules26102940
  • Dai Z, Qiao J, Yang S, Hu S, Zuo J, Zhu W, Huang C. 2015. Species authentication of common meat based on PCR analysis of the mitochondrial COI gene. Appl Biochem Biotechnol. 176(6):1770–1780. doi:10.1007/s12010-015-1715-y
  • Darwish IA. 2006. Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci. 2(3):217–235.
  • Das M, Goswami P. 2013. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application. Bioelectrochemistry. 89:19–25. doi:10.1016/j.bioelechem.2012.08.007
  • Demirhan Y, Ulca P, Senyuva HZ. 2012. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication. Meat Sci. 90(3):686–689. doi:10.1016/j.meatsci.2011.10.014
  • Dhama K, Karthik K, Chakraborty S, Tiwari R, Kapoor S, Kumar A, Thomas P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): a new diagnostic tool lights the world of diagnosis of animal and human pathogen: a review. Pak J Biol Sci. 17(2):151–166. doi:10.3923/pjbs.2014.151.166
  • Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C. 2020. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun. 11(1):4711. doi:10.1038/s41467-020-18575-6
  • Dzantiev BB, Byzova NA, Urusov AE, Zherdev AV. 2014. Immunochromatographic methods in food analysis. Trends Anal Chem. 55:81–93. doi:10.1016/j.trac.2013.11.007
  • El Fels L, Zamama M, Hafidi M. 2015. Advantages and limitations of using FTIR spectroscopy for assessing the maturity of sewage sludge and olive oil waste co-composts. In: Chamy R, Rosenkranz F, Soler L, editors. Biodegradation and bioremediation of polluted systems – New advances and technologies. [place unknown]: IntechOpen; p. 128–144.
  • Emwas AHM. 2015. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 1277:161–193.
  • Erwanto Y. 2018. Molecular based method using PCR technology on porcine derivative detection for halal authentication. In: Abdurakhmonov I, editor. Genotyping. [place unknown]: IntechOpen; p. 66–84.
  • Erwanto Y, Abidin MZ, Muslim EYP, Sugiyono S, Rohman A. 2014. Identification of pork contamination in meatballs of Indonesia local market using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Asian-Australas J Anim Sci. 27(10):1487–1492. doi:10.5713/ajas.2014.14014
  • Fadzillah NA, Rohman A, Salleh RA, Amin I, Shuhaimi M, Farahwahida MY, Rashidi O, Aizat JM, Khatib A. 2017. Authentication of butter from lard adulteration using high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Int J Food Prop. 20(9):2147–2156. doi:10.1080/10942912.2016.1233428
  • Fischer J. 2016. Markets, religion, regulation: Kosher, halal and Hindu vegetarianism in global perspective. Geoforum. 69:67–70. doi:10.1016/j.geoforum.2015.12.011
  • Forgács E, Cserháti T. 2003. Gas chromatography. In: Lees M, editor. Food authenticity and traceability. 1st ed. Cambridge (UK): Woodhead Publishing Limited; p. 197–217.
  • Garcia-Descalzo L, Garca-López E, Alczar A, Baquero F, Ci C. 2012. Gel electrophoresis of proteins. In: Magdeldin S, editor. Gel electrophoresis – Principles and basics. [place unknown]: IntechOpen; p. 57–68.
  • Gil AL. 2007. PCR-based methods for fish and fishery products authentication. Trends Food Sci Technol. 18(11):558–566.
  • Gill P, Moghadam TT, Ranjbar B. 2010. Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech. 21(4):167–193.
  • Górska-Horczyczak E, Guzek D, Molęda Z, Wojtasik-Kalinowska I, Brodowska M, Wierzbicka A. 2016. Applications of electronic noses in meat analysis. Food Sci Technol. 36(3):389–395. doi:10.1590/1678-457X.03615
  • Grdadolnik J. 2002. ATR-FTIR spectroscopy: its advantages and limitations. Acta Chim Slov. 49(3):631–642.
  • Grujić R, Savanović D. 2018. Analysis of myofibrillar and sarcoplasmic proteins in pork meat by capillary gel electrophoresis. Foods Raw Mater. 6(2):421–428. doi:10.21603/2308-4057-2018-2-421-428
  • Guan F, Jin YT, Zhao J, Xu AC, Luo YY. 2018. A PCR method that can be further developed into PCR-RFLP assay for eight animal species identification. J Anal Methods Chem. 2018:5890140–5890146. doi:10.1155/2018/5890140
  • Gummadi S, Kandula VN. 2020. A review on electrophoresis, capillary electrophoresis and hyphenations. Int J Pharm Sci Res. 11(12):6038–6056.
  • Gunstone FD. 1996. Fatty acids and lipid chemistry. 1st ed. London: Chapman & Hall.
  • Ha J, Kim S, Lee J, Lee S, Lee H, Choi Y, Oh H, Yoon Y. 2017. Identification of pork adulteration in processed meat products using the developed mitochondrial DNA-based primers. Korean J Food Sci Anim Resour. 37(3):464–468. doi:10.5851/kosfa.2017.37.3.464
  • Hamzah A, Mutalib SA, Babji AS. 2014. Porcine DNA detection in finished meat products using different mitochondrial DNA (mt-DNA) on polymerase chain reaction. J Nutr Food Sci. 04(06):1–3. doi:10.4172/2155-9600.1000323
  • Hartati YW, Suryani AA, Agustina M, Gaffar S, Anggraeni A. 2019. Gold nanoparticle–DNA bioconjugate–based electrochemical biosensor for detection of Sus scrofa mtDNA in raw and processed meat. Food Anal Methods. 12(11):2591–2600. doi:10.1007/s12161-019-01593-6
  • Harun FW. 2019. Fourier transform infrared spectroscopy as a technique for multivariate analysis of lard adulteration in food products: a review. JFatwa. 17:1–13. doi:10.33102/jfatwa.vol17no1.1
  • Hashim HO, Al-Shuhaib MBS. 2019. Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: a review. J Apple Biotechnol Rep. 6(4):137–144. doi:10.29252/JABR.06.04.02
  • Hassan N, Ahmad T, Zain NM. 2018. Chemical and chemometric methods for halal authentication of gelatin: an overview. J Food Sci. 83(12):2903–2911. doi:10.1111/1750-3841.14370
  • Hatzakis E. 2019. Nuclear Magnetic Resonance (NMR) Spectroscopy in food science: a comprehensive review. Compr Rev Food Sci Food Saf. 18(1):189–220. doi:10.1111/1541-4337.12408
  • He H, Hong X, Feng Y, Wang Y, Ying J, Liu Q, Qian Y, Zhou X, Wang D. 2015. Application of quadruple multiplex PCR detection for beef, duck, mutton and pork in mixed meat. J Food Nutr Res. 3(6):392–398. doi:10.12691/jfnr-3-6-6
  • Hermanto S. 2013. Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J Food Pharm Sci. 1:68–73.
  • Hossain MAM, Ali ME, Abd Hamid SB, Mustafa S, Mohd Desa MN, Zaidul ISM. 2016. Double gene targeting multiplex polymerase chain reaction-restriction fragment length polymorphism assay discriminates beef, buffalo, and pork substitution in frankfurter products. J Agric Food Chem. 64(32):6343–6354. doi:10.1021/acs.jafc.6b02224
  • Hossain MAM, Ali ME, Sultana S, Bonny SQ, Kader MA, Rahman MA. 2017. Quantitative tetraplex real-time polymerase chain reaction assay with TaqMan probes discriminates cattle, buffalo, and porcine materials in food chain. J Agric Food Chem. 65(19):3975–3985. doi:10.1021/acs.jafc.7b00730
  • Hoyem T, Thorson B. 1970. Myoglobin electrophoretic patterns in identification of meat from different animal species. J Agric Food Chem. 18(4):737–739. doi:10.1021/jf60170a048
  • Hsieh YHP, Rao Q. 2017. Immunoassays. In: Nielsen SS, editor. Food analysis. 4th ed. New York (NY): Springer Cham; p. 487–502.
  • Huang CH, Lee KC, Doudna JA. 2018. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer. 4(7):499–512. doi:10.1016/j.trecan.2018.05.006
  • Huang Y, Wu Z, Su R, Ruan G, Du F, Li G. 2016. Current application of chemometrics in traditional Chinese herbal medicine research. J Chromatogr B Analyt Technol Biomed Life Sci. 1026:27–35. doi:10.1016/j.jchromb.2015.12.050
  • Jasper JP, Zhang F, Poe RB, Linhardt RJ. 2015. Stable-isotopic analysis of porcine, bovine and ovine heparins. J Pharm Sci. 104(2):457–463. doi:10.1002/jps.24134
  • Jaswir I, Mirghani MES, Salleh HM, Ramli N, Octavianti F, Hendri R. 2016. An overview of the current analytical methods for halal testing. In: Ab. Manan SK, Abd Rahman F, Sahri M, editors. Contemporary issues and development in the global halal industry. 1st ed. Singapore: Springer; p. 291–300.
  • Jorfi R, Mustafa SC, Man YB, Hashim DBM, Sazili AQ, Farjam AS, Nateghi L, Kashiani P. 2012. Differentiation of pork from beef, chicken, mutton and chevon according to their primary amino acids content for halal authentication. Afr J Biotechnol. 11(32):8160–8166.
  • Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. 2021. CRISPR-based diagnostics. Nat Biomed Eng. 5(7):643–656. doi:10.1038/s41551-021-00760-7
  • Kang SSN, Lee HG, Kim H. 2018. Development and comparison of a porcine gelatin detection system targeting mitochondrial markers for Halal authentication. Food Sci Technol. 97:697–702. doi:10.1016/j.lwt.2018.07.062
  • Karabasanavar NS, Singh SP, Kumar D, Shebannavar SN. 2014. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop. Food Chem. 145:530–534. doi:10.1016/j.foodchem.2013.08.084
  • Karimi S, Feizy J, Mehrjo F, Farrokhnia M. 2016. Detection and quantification of food colorant adulteration in saffron sample using chemometric analysis of FT-IR spectra. RSC Adv. 6(27):23085–23093. doi:10.1039/C5RA25983E
  • Karthik K, Rathore R, Thomas P, Arun TR, Viswas KN, Dhama K, Agarwal RK. 2014. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX. 1:137–143. doi:10.1016/j.mex.2014.08.009
  • Kashir J, Yaqinuddin A. 2020. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med Hypotheses. 141:109786. doi:10.1016/j.mehy.2020.109786
  • Khamrin P, Takanashi S, Chan-It W, Kobayashi M, Nishimura S, Katsumata N, Okitsu S, Maneekarn N, Nishio O, Ushijima H. 2009. Immunochromatography test for rapid detection of norovirus in fecal specimens. J Virol Methods. 157(2):219–222. doi:10.1016/j.jviromet.2008.12.012
  • Kim Y, Choi SJ, Choi C. 2017. An efficient PCR-RFLP method for the rapid identification of Korean Pyropia species. Molecules. 22(12):2182. doi:10.3390/molecules22122182
  • Kim HC, Ko YJ, Kim M, Choe J, Yong HI, Jo C. 2019. Optimization of 1D 1H quantitative NMR (Nuclear Magnetic Resonance conditions for polar metabolites in meat. Food Sci Anim Resour. 39(1):1–12. doi:10.5851/kosfa.2018.e54
  • Kim GD, Seo JK, Yum HW, Jeong JY, Yang HS. 2017. Protein markers for discrimination of meat species in raw beef, pork and poultry and their mixtures. Food Chem. 217:163–170.
  • Kim M, Yoo I, Lee SY, Hong Y, Kim HY. 2016. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region. Food Chem. 210:102–106. doi:10.1016/j.foodchem.2016.04.084
  • Kitpipit T, Sittichan K, Thanakiatkrai P. 2014. Direct-multiplex PCR assay for meat species identification in food products. Food Chem. 163:77–82. doi:10.1016/j.foodchem.2014.04.062
  • Koczula KM, Gallotta A. 2016. Lateral flow assays. Essays Biochem. 60(1):111–120. doi:10.1042/EBC20150012
  • Kumar A, Kumar RR, Sharma BD, Gokulakrishnan P, Mendiratta SK, Sharma D. 2015. Identification of species origin of meat and meat products on the DNA basis: a review. Crit Rev Food Sci Nutr. 55(10):1340–1351. doi:10.1080/10408398.2012.693978
  • Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, et al. 2020. CRISPR-Cas system: an approach with potentials for COVID-19 diagnosis and therapeutics. Front Cell Infect Microbiol. 10:576875. doi:10.3389/fcimb.2020.576875
  • Kumar D, Singh SP, Karabasanavar NS, Singh R, Umapathi V. 2014. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene. J Food Sci Technol. 51(11):3458–3463. doi:10.1007/s13197-012-0864-z
  • Kurbanov M, Mukhamadiev B, Kalanova D, Muzafarova K, Kurbanova S. 2021. Immune-enzyme methods of food safety analysis. IOP Conf Ser: Earth Environ Sci. 848(1):012185. doi:10.1088/1755-1315/848/1/012185
  • Kuswandi B, Cendekiawan KA, Kristiningrum N, Ahmad M. 2015. Pork adulteration in commercial meatballs determined by chemometric analysis of NIR Spectra. Food Measure. 9(3):313–323. doi:10.1007/s11694-015-9238-3
  • Kuswandi B, Gani AA, Ahmad M. 2017. Immuno strip test for detection of pork adulteration in cooked meatballs. Food Biosci. 19:1–6. doi:10.1016/j.fbio.2017.05.001
  • Kuswandi B, Irmawati T, Hidayat MA, Ahmad M. 2014. A simple visual ethanol biosensor based on alcohol oxidase immobilized onto polyaniline film for halal verification of fermented beverage samples. Sensors. 14(2):2135–2149. doi:10.3390/s140202135
  • Kuswandi B, Putri FK, Gani AA, Ahmad M. 2015. Application of class-modelling techniques to infrared spectra for analysis of pork adulteration in beef jerkys. J Food Sci Technol. 52(12):7655–7668. doi:10.1007/s13197-015-1882-4
  • Latief M, Khorsidtalab A, Saputra I, Akmeliawati R, Nurashikin A, Jaswir I, Witjaksono G. 2017. Rapid lard identification with portable electronic nose. IOP Conf Ser: Mater Sci Eng. 260:012043. doi:10.1088/1757-899X/260/1/012043
  • Lau HY, Faridah S, Sohana R. 2019. Sensitive Detection of Pyricularia oryzae using loop mediated isothermal amplification (LAMP). Trans Malaysian Soc Plant Physiol. 26:339–342.
  • Lee SY, Kim MJ, Hong Y, Kim HY. 2016. Development of a rapid on-site detection method for pork in processed meat products using real-time loop-mediated isothermal amplification. Food Control. 66:53–61. doi:10.1016/j.foodcont.2016.01.041
  • Leng T, Li F, Xiong L, Xiong Q, Zhu M, Chen Y. 2020. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control. 113:107203. doi:10.1016/j.foodcont.2020.107203
  • Leong SY, Oey I. 2017. Measures of food quality. In: Smithers GW, editor. Reference module in food science. Netherlands: Elsevier Inc. doi:10.1016/B978-0-08-100596-5.21140-2
  • Li Q, Chen J, Huyan Z, Kou Y, Xu L, Yu X, Gao JM. 2019. Application of Fourier transform infrared spectroscopy for the quality and safety analysis of fats and oils: a review. Crit Rev Food Sci Nutr. 59(22):3597–3611. doi:10.1080/10408398.2018.1500441
  • Li Y, Man S, Ye S, Liu G, Ma L. 2022. CRISPR‐Cas‐based detection for food safety problems: current status, challenges, and opportunities. Compr Rev Food Sci Food Saf. 21(4):3770–3798. doi:10.1111/1541-4337.13000
  • Lim SA, Ahmed MU. 2016. Introduction to food biosensors. In: Ahmed MU, Zourob M, Tamiya E, editors. Food biosensors.1st ed. London: Royal Society of Chemistry; p. 1–12.
  • Lin CC, Fung LL, Chan PK, Lee CM, Chow KF, Cheng SH. 2014. A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species. Meat Sci. 96(2 Pt A):922–929. doi:10.1016/j.meatsci.2013.09.001
  • Liu L, Chen FC, Dorsey JL, Hsieh YHP. 2006. Sensitive monoclonal antibody-based sandwich ELISA for the detection of porcine skeletal muscle in meat and feed products. J Food Sci. 71(1):1–6.
  • Lo YT, Shaw PC. 2018. DNA-based techniques for authentication of processed food and food supplements. Food Chem. 240:767–774. doi:10.1016/j.foodchem.2017.08.022
  • Lockley AK, Bardsley RG. 2000. DNA-based methods for food authentication. Trends Food Sci Technol. 11(2):67–77. doi:10.1016/S0924-2244(00)00049-2
  • Luypaert J, Massart DL, Vander Heyden Y. 2007. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta. 72(3):865–883. doi:10.1016/j.talanta.2006.12.023
  • Magiati M, Myridaki VM, Christopoulos TK, Kalogianni DP. 2019. Lateral flow test for meat authentication with visual detection. Food Chem. 274:803–807. doi:10.1016/j.foodchem.2018.09.063
  • Mane BG. 2016. PCR-RFLP assay for detection of species origin of meat and meat products-A review. J Food Nutr Packag. 3:74–80.
  • Mansur AR, Oh J, Lee HS, Oh SY. 2022. Determination of ethanol in foods and beverages by magnetic stirring-assisted aqueous extraction coupled with GC-FID: a validated method for halal verification. Food Chem. 366:130526. doi:10.1016/j.foodchem.2021.130526
  • Marikkar JMN, Ghazali HM, Long K, Lai OM. 2003. Lard uptake and its detection in selected food products deep-fried in lard. Food Res Int. 36(9-10):1047–1060. doi:10.1016/j.foodres.2003.08.003
  • Marikkar JMN, Lai OM, Ghazali HM, Che Man YB. 2001. Detection of lard and randomized lard as adulterants in refined-bleached-deodorized palm oil by differential scanning calorimetry. J Amer Oil Chem Soc. 78(11):1113–1119. doi:10.1007/s11746-001-0398-5
  • Maryam S, Sismindari S, Raharjo TJ, Sudjadi Rohman A. 2016. Determination of porcine contamination in laboratory prepared dendeng using mitochondrial D-Loop686 and cyt b gene primers by real time polymerase chain reaction. Int J Food Prop. 19(1):187–195. doi:10.1080/10942912.2015.1020434
  • Masiri J, Benoit L, Barrios-Lopez B, Thienes C, Meshgi M, Agapov A, Dobritsa A, Nadala C, Samadpour M. 2016. Development and validation of a rapid test system for detection of pork meat and collagen residues. Meat Sci. 121:397–402. doi:10.1016/j.meatsci.2016.07.006
  • Mohanty AK, Yadav ML, Choudhary S. 2017. Gel electrophoresis of proteins and nucleic acids. In: Srivastava N, Pande M, editors. Protocols in semen biology (comparing assays). 1st ed. Singapore: Springer; p. 233–246.
  • Mohd Hafidz MM, Makatar WH, Adilan H, Nawawee T. 2020. Detection of pork in processed meat products by species-specific PCR for halal verification: food fraud cases in Hat Yai, Thailand. Food Res. 4(S1):244–249. doi:10.26656/fr.2017.4(S1).S21
  • Montowska M, Pospiech E. 2007. Species identification of meat by electrophoretic methods. Acta Sci Pol Technol Aliment. 6(1):5–16.
  • Mortas M, Awad N, Ayvaz H. 2022. Adulteration detection technologies used for halal/kosher food products: an overview. Discov Food. 2(1):1–23. doi:10.1007/s44187-022-00015-7
  • Mostaço-Guidolin LB, Murakami LS, Nomizo A, Bachmann L. 2009. Fourier transform infrared spectroscopy of skin cancer cells and tissues. Appl Spectrosc Rev. 44(5):438–455. doi:10.1080/05704920903042098
  • Murugaiah C, Noor ZM, Mastakim M, Bilung LM, Selamat J, Radu S. 2009. Meat species identification and Halal authentication analysis using mitochondrial DNA. Meat Sci. 83(1):57–61. doi:10.1016/j.meatsci.2009.03.015
  • Mutalib SA, Muin NM, Abdullah A, Hassan O, Wan Mustapha WA, Abdullah Sani N, Maskat MY. 2015. Sensitivity of polymerase chain reaction (PCR)-southern hybridization and conventional PCR analysis for Halal authentication of gelatin capsules. Food Sci Technol. 63(1):714–719. doi:10.1016/j.lwt.2015.03.006
  • N’cho JS, Fofana I, Hadjadj Y, Beroual A. 2016. Review of physicochemical-based diagnostic techniques for assessing insulation condition in aged transformers. Energies. 9(5):367. doi:10.3390/en9050367
  • Nakyinsige K, Man YBC, Sazili AQ. 2012. Halal authenticity issues in meat and meat products. Meat Sci. 91(3):207–214. doi:10.1016/j.meatsci.2012.02.015
  • Neethirajan S, Ragavan V, Weng X, Chand R. 2018. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors. 8(1):23. doi:10.3390/bios8010023
  • Nemati M, Oveisi MR, Abdollahi H, Sabzevari O. 2004. Differentiation of bovine and porcine gelatins using principal component analysis. J Pharm Biomed Anal. 34(3):485–492. doi:10.1016/s0731-7085(03)00574-0
  • Ng PC, Ahmad Ruslan NAS, Chin LX, Ahmad M, Abu Hanifah S, Abdullah Z, Khor SM. 2022. Recent advances in halal food authentication: challenges and strategies. J Food Sci. 87(1):8–35. doi:10.1111/1750-3841.15998
  • Ni’mah A, Kartikasari Y, Pratama AD, Kartikasari LR, Hertanto BS, Cahyadi M. 2016. Detection of pork contamination in fresh and cooked beef using genetic marker mitochondrial-DNA cytochrome b by duplex-PCR. J Indones Trop Anim Agric. 41(1):7–12.
  • Novianty E, Kartikasari LR, Lee JH, Cahyadi M. 2017. Identification of pork contamination in meatball using genetic marker mitochondrial DNA cytochrome b gene by duplex-PCR. IOP Conf Ser: Mater Sci Eng. 193:012002. doi:10.1088/1757-899X/193/1/012002
  • Nur Azira T, Amin I. 2016. Advances in differential scanning calorimetry for food authenticity testing. In: Downey G, editor. Advances in food authenticity testing. 1st ed. Netherlands: Elsevier Inc; p. 311–335.
  • Nur Azira T, Amin IC, Man YB. 2012. Differentiation of bovine and porcine gelatins in processed products via Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and principal component analysis (PCA) techniques. Int Food Res J. 19(3):1175–1180.
  • Nur Azira T, Che Man YB, Raja Mohd Hafidz RN, Aina MA, Amin I. 2014. Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights. Food Chem. 151:286–292. doi:10.1016/j.foodchem.2013.11.066
  • Nurjuliana M, Che Man YB, Mat Hashim D, Mohamed AKS. 2011. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer. Meat Sci. 88(4):638–644. doi:10.1016/j.meatsci.2011.02.022
  • O’Sullivan MG, Kerry JP. 2009. Sensory evaluation of fresh meat. In: Kerry JP, Ledward D, editors. Improving the sensory and nutritional quality of fresh meat. 1st ed. Netherlands: Elsevier Inc; p. 178–196.
  • Ogrinc N, Camin F. 2020. Isotopic techniques for food science. Molecules. 26(1):134. doi:10.3390/molecules26010134
  • Olya HGT, Al-Ansi A. 2018. Risk assessment of halal products and services: implication for tourism industry. Tour Manag. 65:279–291. doi:10.1016/j.tourman.2017.10.015
  • Orbayinah S, Widada H, Hermawan A, Sudjadi S, Rohman A. 2019. Application of real-time polymerase chain reaction using species specific primer targeting on mitochondrial cytochrome-b gene for analysis of pork in meatball products. J Adv Vet Anim Res. 6(2):260–265. doi:10.5455/javar.2019.f342
  • Park S, Kim JC, Lee HS, Jeong SW, Shim YS. 2016. Determination of five alcohol compounds in fermented Korean foods via simple liquid extraction with dimethyl-sulfoxide followed by gas chromatography-mass spectrometry for Halal food certification. Food Sci Technol. 74:563–570. doi:10.1016/j.lwt.2016.08.030
  • Pasquini C. 2003. Near infrared spectroscopy: fundamentals, practical aspects and analytical applications. J Braz Chem Soc. 14(2):198–219. doi:10.1590/S0103-50532003000200006
  • Petrakis EA, Cagliani LR, Polissiou MG, Consonni R. 2015. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by1H NMR metabolite fingerprinting. Food Chem. 173:890–896. doi:10.1016/j.foodchem.2014.10.107
  • Prieto N, Pawluczyk O, Dugan MER, Aalhus JL. 2017. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl Spectrosc. 71(7):1403–1426. doi:10.1177/0003702817709299
  • Rady A, Adedeji A. 2018. Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat Sci. 136:59–67. doi:10.1016/j.meatsci.2017.10.014
  • Raharjo TJ, Chudori YNC, Agustina FW. 2019. TaqMan probe real-time polymerase chain reaction targeting the ATPase 6 gene for the detection of pork adulteration in meat and meatballs. J Food Saf. 39(6):1–6. doi:10.1111/jfs.12715
  • Rahmati S, Julkapli NM, Yehye WA, Basirun WJ. 2016. Identification of meat origin in food products-A review. Food Control. 68:379–390. doi:10.1016/j.foodcont.2016.04.013
  • Rahmawati S, Raharjo TJ, Sudjadi Rohman A. 2016. Analysis of pork contamination in Abon using mitochondrial D-Loop22 primers using real time polymerase chain reaction method. Int Food Res J. 23(1):370–374.
  • Raja Nhari RMH, Hanish I, Khairil Mokhtar NF, Hamid M, El Sheikha AF. 2019. Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances. Qual Assur Saf Crop Foods. 11(5):449–457. doi:10.3920/QAS2018.1415
  • Ran G, Ren L, Han X, Liu X, Li Z, Pang D, Ouyang H, Tang X. 2016. Development of a rapid method for the visible detection of pork DNA in halal products by loop-mediated isothermal amplification. Food Anal Methods. 9(3):565–570. doi:10.1007/s12161-015-0246-z
  • Regenstein JM, Chaudry MM, Regenstein CE. 2003. The kosher and halal food laws. Compr Rev Food Sci Food Saf. 2(3):111–127. doi:10.1111/j.1541-4337.2003.tb00018.x
  • Reis MM, Rosenvold K. 2014. Prediction of meat attributes from intact muscle using near-infrared spectroscopy. In: Dikeman M, Devine C, editors. Encyclopedia of meat sciences, 2nd ed. Netherlands: Elsevier Inc; p. 70–77.
  • Rivas-Cañedo A, Juez-Ojeda C, Nuñez M, Fernández-García E. 2011. Effects of high-pressure processing on the volatile compounds of sliced cooked pork shoulder during refrigerated storage. Food Chem. 124(3):749–758. doi:10.1016/j.foodchem.2010.06.091
  • Rohman A, Salamah N. 2018. The employment of spectroscopic techniques coupled with chemometrics for authentication analysis of halal pharmaceuticals. J Appl Pharm Sci. 8(10):63–68.
  • Rohman A, Erwanto Y, Che Man YB. 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 88(1):91–95. doi:10.1016/j.meatsci.2010.12.007
  • Rohman A, Windarsih A. 2020. The application of molecular spectroscopy in combination with chemometrics for halal authentication analysis: a review. Int J Mol Sci. 21(14):1–18.
  • Różycki M, Chmurzyńska E, Bilska-Zając E, Karamon J, Cencek T. 2018. Isoelectric focusing of proteins in the pH gradient as a tool for identification of species origin of raw meat. J Vet Res. 62(2):151–159. doi:10.2478/jvetres-2018-0024
  • Sahoo PR, Sethy K, Mohapatra S, Panda D. 2016. Loop mediated isothermal amplification: an innovative gene amplification technique for animal diseases. Vet World. 9(5):465–469. doi:10.14202/vetworld.2016.465-469
  • Singh VP, Neelam S. 2011. Meat species specifications to ensure the quality of meat-A review. International J of Meat Science. 1(1):15–26. doi:10.3923/ijmeat.2011.15.26
  • Sint D, Raso L, Traugott M. 2012. Advances in multiplex PCR: balancing primer efficiencies and improving detection success. Methods Ecol Evol. 3(5):898–905. doi:10.1111/j.2041-210X.2012.00215.x
  • Skarpeid HJ, Kvaal K, Hildrum KI. 1998. Identification of animal species in ground meat mixtures by multivariate analysis of isoelectric focusing protein profiles. Electrophoresis. 19(18):3103–3109. doi:10.1002/elps.1150191811
  • Soraji AJ, Awang MD, Mohd Yusoff AN. 2017. Malaysia halal trust: between reality and challenges. Int J Adv Soc Sci. 3:197–197. doi:10.18769/ijasos.309676
  • Staggemeier R, Bortoluzzi M, Heck TMS, Spilki FR, Almeida SEM. 2015. Quantitative vs. conventional PCR for detection of human adenoviruses in water and sediment samples. Rev Inst Med Trop Sao Paulo. 57(4):299–303. doi:10.1590/S0036-46652015000400005
  • Stephen Inbaraj B, Chen BH. 2016. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal. 24(1):15–28. doi:10.1016/j.jfda.2015.05.001
  • Sultana S, Hossain MAM, Zaidul ISM, Ali ME. 2018. Multiplex PCR to discriminate bovine, porcine, and fish DNA in gelatin and confectionery products. Food Sci Technol. 92:169–176. doi:10.1016/j.lwt.2018.02.019
  • Suparman W, Sri R, Sundhani E, Saputri SD. 2015. The use of Fourier transform infrared spectroscopy (FTIR) and gas chromatography mass spectroscopy (GCMS) for Halal authentication in imported chocolate with various variants. J Food Pharm Sci. 2:6–11.
  • Tabit FT. 2016. Advantages and limitations of potential methods for the analysis of bacteria in milk: a review. J Food Sci Technol. 53(1):42–49. doi:10.1007/s13197-015-1993-y
  • Tao D, Xiao X, Lan X, Wang Y, Khazalwa EM, Pan W, Ruan J, Jiang Y, Liu X, Ye R, et al. 2022. An inexpensive CRISPR-based point-of-care test for the identification of meat species and meat products. Genes. 13(5):912. doi:10.3390/genes13050912
  • Tetyana P, Shumbula M, Njengele-Tetyana Z. 2021. Biosensors: design, development and applications. In: Ameen S, Akhtar MS, Shin HS, editors. Nanopores. [place unknown]: IntechOpen; p. 1–19.
  • Thienes CP, Masiri J, Benoit LA, Barrios-Lopez B, Samuel SA, Cox DP, Dobritsa AP, Nadala C, Samadpour M. 2018. Quantitative detection of pork contamination in cooked meat products by ELISA. J AOAC Int. 101(3):810–816. doi:10.5740/jaoacint.17-0036
  • Thornton H. 1968. Textbook of meat inspection, 6th ed. Bailliere, London: Tindall and Cassel.
  • Tian X, Wang J, Cui S. 2013. Analysis of pork adulteration in minced mutton using electronic nose of metal oxide sensors. J Food Eng. 119(4):744–749. doi:10.1016/j.jfoodeng.2013.07.004
  • von Bargen C, Brockmeyer J, Humpf HU. 2014. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. J Agric Food Chem. 62(39):9428–9435. doi:10.1021/jf503468t
  • Wang X, Ma YH, Hong C. 2006. Analysis of the genetic diversity and the phylogenetic evolution of Chinese sheep based on cyt b gene sequences. Yi Chuan Xue Bao. 33(12):1081–1086. doi:10.1016/S0379-4172(06)60145-5
  • Wang X, Seo DJ, Lee MH, Choi C. 2014. Comparison of conventional PCR, multiplex PCR, and loop-mediated isothermal amplification assays for rapid detection of Arcobacter species. J Clin Microbiol. 52(2):557–563. doi:10.1128/JCM.02883-13
  • Watts MR, James G, Sultana Y, Ginn AN, Outhred AC, Kong F, Verweij JJ, Iredell JR, Chen SCA, Lee R. 2014. A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye. Am J Trop Med. 90(2):306–311. doi:10.4269/ajtmh.13-0583
  • Wilson K, Walker J. 2006. Principles and techniques of biochemistry and molecular biology, 7th ed. New York (NY): Cambridge University Press.
  • Windarsih A, Rohman A, Swasono RT. 2019. Application of 1H-NMR based metabolite fingerprinting and chemometrics for authentication of Curcuma longa adulterated with C. heyneana. J Appl Res Med Aromat Plants. 13:100203. doi:10.1016/j.jarmap.2019.100203
  • Winterø AK, Thomsen PD, Davies W. 1990. A comparison of DNA-Hybridization, immunodiffusion, countercurrent immunoelectrophoresis and isoelectric focusing for detecting the admixture of pork to beef. Meat Sci. 27(1):75–85. doi:10.1016/0309-1740(90)90030-A
  • Wolf C, Rentsch J, Hübner P. 1999. PCR-RFLP analysis of mitochondrial DNA: a reliable method for species identification. J Agric Food Chem. 47(4):1350–1355. doi:10.1021/jf9808426
  • Wong YP, Othman S, Lau YL, Radu S, Chee HY. 2018. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol. 124(3):626–643. doi:10.1111/jam.13647
  • Wu Y, Dong Y, Shi Y, Yang H, Zhang J, Khan MR, Deng S, He G, He Q, Lv Y, et al. 2021. CRISPR-Cas12-based rapid authentication of halal food. J Agric Food Chem. 69(35):10321–10328. doi:10.1021/acs.jafc.1c03078
  • Wu Y, Liu J, Li HT, Zhang T, Dong Y, Deng S, Lv Y, He Q, Deng R. 2022. CRISPR-Cas system meets DNA barcoding: development of a universal nucleic acid test for food authentication. Sens Actuators B Chem. 353:131138. doi:10.1016/j.snb.2021.131138
  • Wu H, Qian C, Wu C, Wang Z, Wang D, Ye Z, Ping J, Wu J, Ji F. 2020. End-point dual specific detection of nucleic acids using CRISPR/Cas12a based portable biosensor. Biosens Bioelectron. 157:112153. doi:10.1016/j.bios.2020.112153
  • Xu W, Shang Y. 2016. The detection techniques of genetically modified organisms. In: Watson RR, Preedy VR, editors. Genetically modified organisms in food, 1st ed. Netherlands: Elsevier; p. 343–351.
  • Xu Y, Xiang W, Wang Q, Cheng N, Zhang L, Huang K, Xu W. 2017. A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site. Sci Rep. 7:43453. doi:10.1038/srep43453
  • Yacoub HA, Sadek MA. 2017. Identification of fraud (with pig stuffs) in chicken-processed meat through information of mitochondrial cytochrome b. Mitochondrial DNA Mapp Seq Anal. 28(6):855–859. doi:10.1080/24701394.2016.1197220
  • Yang L, Fu S, Peng X, Li L, Song T, Li L. 2014. Identification of pork in meat products using real-time loop-mediated isothermal amplification. Biotechnol Biotechnol Equip. 28(5):882–888. doi:10.1080/13102818.2014.963789
  • Yang W, Kang X, Yang Q, Lin Y, Fang M. 2013. Review on the development of genotyping methods for assessing farm animal diversity. J Anim Sci Biotechnol. 4(1):2–6. doi:10.1186/2049-1891-4-2
  • Yang L, Wu T, Liu Y, Zou J, Huang Y, Babu SV, Lin L. 2018. Rapid identification of pork adulterated in the beef and mutton by infrared spectroscopy. J Spectrosc. 2018:1–10. doi:10.1155/2018/2413874
  • Yusop MHM, Bakar MFA. 2020. Review on halal forensic: a focus on DNA-based methods for pork authentication. Food Res. 4(6):2347–2354. doi:10.26656/fr.2017.4(6).180
  • Yusop MHM, Mustafa S, Man YBC, Omar AR, Mokhtar NFK. 2012. Detection of raw pork targeting porcine-specific mitochondrial cytochrome B gene by molecular beacon probe real-time polymerase chain reaction. Food Anal Methods. 5(3):422–429. doi:10.1007/s12161-011-9260-y
  • Zhang T, Li HT, Xia X, Liu J, Lu Y, Khan MR, Deng S, Busquets R, He G, He Q, et al. 2021. Direct detection of foodborne pathogens via a proximal DNA probe-based CRISPR-Cas12 assay. J Agric Food Chem. 69(43):12828–12836. doi:10.1021/acs.jafc.1c04663
  • Zhang M, Li Y, Zhang Y, Kang C, Zhao W, Ren N, Guo W, Wang S. 2022. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem. 371:131075. doi:10.1016/j.foodchem.2021.131075
  • Zhang G, Liu T, Wang Q, Chen L, Lei J, Luo J, Ma G, Su Z. 2009. Mass spectrometric detection of marker peptides in tryptic digests of gelatin: a new method to differentiate between bovine and porcine gelatin. Food Hydrocoll. 23(7):2001–2007. doi:10.1016/j.foodhyd.2009.03.010
  • Zhang GF, Liu T, Wang Q, Lei JD, Ma GH, Su ZG. 2008. Identification of specific peptides in digested gelatins by high performance liquid chromatography/mass spectrometry. Chinese J Anal Chem. 36(11):1499–1504. doi:10.1016/S1872-2040(09)60003-7
  • Zhao J, Li A, Jin X, Pan L. 2020. Technologies in individual animal identification and meat products traceability. Biotechnol Biotechnol Equip. 34(1):48–57. doi:10.1080/13102818.2019.1711185
  • Zhao G, Wang J, Yao C, Xie P, Li X, Xu Z, Xian Y, Lei H, Shen X. 2022. Alkaline lysis-recombinase polymerase amplification combined with CRISPR/Cas12a assay for the ultrafast visual identification of pork in meat products. Food Chem. 383:132318. doi:10.1016/j.foodchem.2022.132318
  • Zhao Y, Zhang B, Chen G, Chen A, Yang S, Ye Z. 2014. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food Chem. 145:300–305. doi:10.1016/j.foodchem.2013.08.062
  • Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I. 2020. Current analytical methods for porcine identification in meat and meat products. Food Chem. 324:126664. doi:10.1016/j.foodchem.2020.126664
  • Zvereva EA, Popravko DS, Hendrickson OD, Vostrikova NL, Chernukha IM, Dzantiev BB, Zherdev AV. 2020. Lateral flow immunoassay to detect the addition of beef, pork, lamb, and horse muscles in raw meat mixtures and finished meat products. Foods. 9(11):1662. doi:10.3390/foods9111662

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.