824
Views
0
CrossRef citations to date
0
Altmetric
Review

Chemical contaminants from food contact materials and articles made from or containing wood and bamboo – a review

ORCID Icon, , ORCID Icon, &
Pages 434-453 | Received 04 Oct 2022, Accepted 01 Jan 2023, Published online: 24 Jan 2023

References

  • Adam O, Badot PM, Degiorgi F, Crini G. 2009. Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.). Ecotoxicol Environ Saf. 72(2):441–449. doi:10.1016/j.ecoenv.2008.07.017
  • Arvanitoyannis IS, Bosnea L. 2004. Migration of substances from food packaging materials to foods. Crit Rev Food Sci Nutr. 44(2):63–76. doi:10.1080/10408690490424621
  • Asensio E, Montanes L, Nerin C. 2020. Migration of volatile compounds from natural biomaterials and their safety evaluation as food contact materials. Food Chem Toxicol. 142:7. doi:10.1016/j.fct.2020.111457
  • Aviat F, Gerhards C, Rodriguez-Jerez JJ, Michel V, Le Bayon I, Ismail R, Federighi M. 2016. Microbial safety of wood in contact with food: a review. Compr Rev Food Sci Food Saf. 15(3):491–505. doi:10.1111/1541-4337.12199
  • Bentlin FRS, Pozebon D, Mello PA, Flores TMM. 2007. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry. Anal Chim Acta. 602(1):23–31. doi:10.1016/j.aca.2007.09.003
  • Bhardwaj A, Alam T, Sharma V, Alam MS, Hamid H, Deshwal GK. 2020. Lignocellulosic agricultural biomass as a biodegradable and eco-friendly alternative for polymer-based food packaging. J Package Technol Res. 4(2):205–216. doi:10.1007/s41783-020-00089-7
  • Biryol D, Nicolas CI, Wambaugh J, Phillips K, Isaacs K. 2017. High-throughput dietary exposure predictions for chemical migrants from food contact substances for use in chemical prioritization. Environ Int. 108:185–194. doi:10.1016/j.envint.2017.08.004
  • Bouma K, Kalsbeek-Van Wijk DK, Sijm D. 2022. Migration of formaldehyde from ‘biobased’ bamboo/melamine cups: a Dutch retail survey. Chemosphere. 292:133439. doi:10.1016/j.chemosphere.2021.133439
  • Bozalongo R, Carrillo J, Torroba MAF, Tena M. 2007. Analysis of French and American oak chips with different toasting degrees by headspace solid-phase microextraction-gas chromatography-mass spectrometry. J Chromatogr A. 1173(1–2):10–17. doi:10.1016/j.chroma.2007.09.079
  • Bradley EL, Boughtflower V, Smith TL, Speck DR, Castle L. 2005. Survey of the migration of melamine and formaldehyde from melamine food contact articles available on the UK market. Food Addit Contam. 22(6):597–606. doi:10.1080/02652030500135243
  • Brandsch R, Pemberton M, Schuster D, Welle F. 2021. Impact of partitioning in short-term food contact applications focused on polymers in support of migration modelling and exposure risk assessment. Molecules. 27(1):121. doi:10.3390/molecules27010121
  • BfR 2019. BfR statement on bamboo cups and tableware https://www.foodpackagingforum.org/news/bfr-statement-on-bamboo-cups-and-tableware.
  • Canellas E, Vera P, Nerin C, Goshawk J, Dreolin N. 2021. The application of ion mobility time of flight mass spectrometry to elucidate neo-formed compounds derived from polyurethane adhesives used in champagne cork stoppers. Talanta. 234:122632. doi:10.1016/j.talanta.2021.122632
  • Chatonnet P, Bonnet S, Boutou S, Labadie MD. 2004. Identification and responsibility of 2,4,6-tribromoanisole in musty, corked odors in wine. J Agric Food Chem. 52(5):1255–1262. doi:10.1021/jf030632f
  • Chatonnet P, Fleury A, Boutou S. 2010. Identification of a new source of contamination of Quercus sp. Oak Wood by 2,4,6-trichloroanisole and its impact on the contamination of barrel-aged wines. J Agric Food Chem. 58(19):10528–10538. doi:10.1021/jf102571v
  • Chen LF, Li YX, Li XW, Ma HX, Xie GJ. 2016. Uncertainty assessment of propiconazole in preserved wood by high-performance liquid chromatography. China Metrol. (11):89–91. doi:10.16569/j.cnki.cn11-3720/t.2016.11.036
  • Chen YH, Huang S, Chen S, Liu Z, Huang XQ, Su YY, Qian ZJ, Wang Y. 2019. Research progress of sample pretreatment and analytical techniques for determination of pentachlorophenol and sodium pentachlorophenol. J Food Saf Qual. 10(14):4465–4473. doi:10.3969/j.issn.2095-0381.2019.14.005
  • Cheng JX, Luo MT. 2020. Detection and risk analysis of sulfur dioxide in disposable bamboo chopsticks. wwwgdchemcom. 47(19):163–164 + 169. doi:10.3969/j.issn.1007-1865.2020.19.069
  • Chira K, Teissedre PL. 2013. Extraction of oak volatiles and ellagitannins compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: behaviour during storage. Food Chem. 140(1–2):168–177. doi:10.1016/j.foodchem.2013.02.049
  • Chinese Commission. 2015. General rules for migration testing of food contact materials and products. Beijing: National Health and Family Planning Commission.
  • Chinese Commission. 2016. General rules for migration testing pretreatment of food contact materials and products. Beijing: National Health and Family Planning Commission.
  • Chinese Commission. 2022. Bamboo and wooden materials and articles for food contact. Beijing: National Health and Family Planning Commission.
  • Corrias F, Cossu E, Cardu P, Angioni A. 2021. UHPLC-MS/MS method for the analysis of 2,6 Toluene diisocyanate and 2,4 toluene diisocyanate released from microa-gglomerated corks in wine. Food Anal. Methods. 14(2):230–236. doi:10.1007/s12161-020-01860-x
  • [Council of Europe]. Resolution AP (2004) 2 on cork stoppers and other cork materials and articles intended to come into contact with foodstuffs. 2004. Europe. www.coe.int/soc-sp.
  • Cunha JMG, Amaral CTM, Franca ACD, Nunes MAS, Silva MRC, Sabbadini PS, Firmo WDA. 2019. Microbiological evaluation of food cutting plates in farmer's markets in the city of Bacabal/MA. Mundo Saude. 43(3):640–644. doi:10.15343/0104-7809.20194303640649
  • Delgado-Torre MP, Ferreiro-Vera C, Priego-Capote F, Pérez-Juan PM, Luque de Castro MD. 2012. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars. J Agric Food Chem. 60(12):3051–3060. doi:10.1021/jf205078k
  • Delgado de la Torre MP, Priego-Capote F, Luque de Castro MD. 2012. Evaluation of the composition of vine shoots and oak chips for oenological purposes by superheated liquid extraction and high-resolution liquid chromatography–time-of-flight/mass spectrometry analysis. J Agric Food Chem. 60(13):3409–3417. doi:10.1021/jf205337a
  • [DGCCRF]. Directorate General for Consumer Affairs, Competition and Fraud Enforcement. 2004. French DGCCRF 2004-64 and French Décret n 92-631. https://www.legifrance.gouv.fr/.
  • Diserens J-M. 2001. Rapid determination of nineteen chlorophenols in wood, paper, cardboard, fruits, and fruit juices by gas chromatography/mass spectrometry. JAOAC Int. 84(3):853–860. doi:10.1093/jaoac/84.3.853
  • [EC] European Commision. 2004. Commission Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on materials and articles intended to come into contact with food and repealing Directives 80/590/EEC and 89/109/EEC. Off J Eur Union L338. 47:4–17.
  • [EC] European Commission. 2011. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off J Eur Union. L12/:1–87.
  • [EC] European Commission Bamboo-zling. 2022. EU enforcement action on plastic food contact materials (FCM) made of bamboo ‘powder’. https://food.ec.europa.eu/safety/eu-agri-food-fraud-network/eu-coordinated-actions/bamboo-zling_en.
  • [EFSA] European Food Safety Authority. 2019. Update of the risk assessment of ‘wood flour and fibres, untreated’ (FCM No 96) for use in food contact materials, and criteria for future applications of materials from plant origin as additives for plastic food contact materials. EFSA J. 17(11):e05902. doi:10.2903/j.efsa.2019.5902
  • Fang CR, Tang RQ, Xu MP, Yu HX, Guo FY, Ma X. 2017. The variation in release and migration of formaldehyde and its risk assessment in bamboo chopping block. J Bamboo Res. 36(02):69–74. doi:10.19560/j.cnki.issn1000-6567.2017.02.011
  • Fang ZJ, Shi LZ, Wu LM. 2020. Research progress on the analysis and detection of harmful substances in chopsticks. J Food Saf Qual. 11(18):6494–6503. doi:10.19812/j.cnki.jfsq11-5956/ts.2020.18.045
  • [FDA] Food and Drug Administration. 2021. Federal regulations ‘food, drugs, and cosmetics’. FDA.21CFR178.3800. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=178.3800
  • Feng XY, Liu GW, Li R, He XZ, Ye SM. 2015. Determination of the sulfur dioxide residue in bamboo and wooden products by ion chromatography. Chin J Health Lab Tec. 25(06):804–806. doi:CNKI:SUN:ZWJZ.0.2015-06-013
  • [FSA]. UK Food Standards Agency. 2002. Project number A03024/5, Research Report “Unusual and non-traditional types of wood used as food contact materials, and the implication for food safety”. https://webarchive.nationalarchives.gov.uk/20141103170743/http://www.foodbase.org.uk/results.php?f_report_id=617
  • Fu SL, Ding L, Xiao JY, Gong Q, Jiao YN, Wang XB, Wang LB. 2011. Determination of 6 chlorophenols in paper, paperboard, wood, and wood products used as food contact materials by accelerated solvent extraction and GC-MS. Packaging Eng. 32(15):48–52. doi:10.19554/j.cnki.1001-3563.2011.15.013
  • Gao CL, Chen SX, Chen H, Wang XC, Li Q, Han ZF. 2015. Extraction and determination of pentachlorophenol in wood package. Packaging Eng. 36(11):51–54 + 82. doi:10.19554/j.cnki.1001-3563.2015.11.012
  • Geueke B, Groh KJ, Maffini MV, Martin OV, Boucher JM, Chiang Y-T, Gwosdz F, Jieh P, Kassotis CD, Łańska P, et al. 2022. Systematic evidence on migrating and extractable food contact chemicals: most chemicals detected in food contact materials are not listed for use. Crit Rev Food Sci Nutr. 1–11. doi:10.1080/10408398.2022.2067828
  • Groh KJ, Geueke B, Martin O, Maffini M, Muncke J. 2021. Overview of intentionally used food contact chemicals and their hazards. Environ Int. 150:14. doi:10.1016/j.envint.2020.106225
  • He SJ, Fan B, Li RY, Yu J, Zhang J. 2011. Determination of thiabendazole, o-phenylphenol and diphenyl residues in chopsticks by high-performance liquid chromatography. Food Sci. 32(16):312–314. doi:CNKI:SUN:SPKX.0.2011-16-068
  • Hu B, Lu Q, Jiang XY, Dong XC, Cui MS, Dong CQ, Yang YP. 2018. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural. J Energy Chem. 27(2):486–501. doi:10.1016/j.jechem.2017.11.013
  • Huang J, Ma M, Xiao LY, Chen DC. 2013. GC determination of residual amount of pentachlorophenol in wood with accelerated solvent extraction. PTCA B: CHEM Anal. 49(02):174–176. doi:CNKI:SUN:LHJH.0.2013-02-019
  • Insa S, Salvado V, Antico E. 2004. Development of solid-phase extraction and solid-phase microextraction methods for the determination of chlorophenols in cork macerate and wine samples. J Chromatogr A. 1047(1):15–20. doi:10.1016/j.chroma.2004.06.104
  • Jia F, Xi S, Li H, Wang J. 2012. Study on migration of melamine monomer in melamine tableware. Packaging Eng. 33(5):77. doi:CNKI:SUN:BZGC.0.2012-05-022
  • Jiang H, Shang GQ, Ji WY, Yang XJ, Zhao M. 2015. Migration rules of formaldehyde in food simulants from organic coating of food contact materials. J Food Saf Qual. 6(11):4635–4639. doi:10.19812/j.cnki.jfsq11-5956/ts.2015.11.064
  • Jing JQ, Cao Y, Wang J. 2017. Detection of fungicides in food contact paper and wood products. Food Sci. 38(20):256–261. doi:10.7506/spkx1002-6630-201720037
  • Jönsson S, Hagberg J, van Bavel B. 2008. Determination of 2,4,6-trichloroanisole and 2,4,6-tribromoanisole in wine using microextraction in packed syringe and gas chromatography − mass spectrometry. J Agric Food Chem. 56(13):4962–4967. doi:10.1021/jf800230y
  • Konkler MJ, Morrell JJ. 2019. Effect of post-treatment steaming on preservative migration from pentachlorophenol-treated wood. Int Wood Prod J. 10(2):70–77. doi:10.1080/20426445.2019.1622238
  • Krasevec I, Nemecek N, Stamcar ML, Cigic IK, Prosen H. 2021. Non-destructive detection of pentachlorophenol residues in historical wooden objects. Polymers. 13(7):1052. doi:10.3390/polym13071052
  • Kukowski K, Martinska V, Sedgeman CA, Kuplic P, Kozliak EI, Fisher S, Kubatova A. 2017. Fate of triazoles in softwood upon environmental exposure. Chemosphere. 184:261–268. doi:10.1016/j.chemosphere.2017.05.168
  • Lan HJ, Wu XM, Feng YJ, Li SY. 2019. Determination of pentachlorophenol in wooden chopping boards and wooden chopsticks by vortex-assisted pre-column derivatization gas chromatography-tandem mass spectrometry. Chin J Food Hyg. 31(03):231–236. doi:10.13590/j.cjfh.2019.03.008
  • Lee CH, Chen KT, Lin JA, Chen YT, Chen YA, Wu JT, Hsieh CW. 2019. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci Technol. 93:271–280. doi:10.1016/j.tifs.2019.09.021
  • Leeman W, Krul L. 2015. Non-intentionally added substances in food contact materials: how to ensure consumer safety. Curr Opin Food Sci. 6:33–37. doi:10.1016/j.cofs.2015.11.003
  • [LFGB] Lebensmittel- und Bedarfgegenständegesetz – German Act for Food Processing and Commodities. 2005. Food and Feed Law § 30, 31. https://www.bmj.de/SharedDocs/Promotion/DE/GesetzeImInternet.html.
  • Li H, Zhang Q, Kang S, Lü Q, Bai H, Wang C. 2012. Determination of chlorophenol and pyrethroid preservatives in wooden furniture by solid phase extraction coupled with gas chromatography-mass spectrometry. Se Pu. 30(6):596–601. doi:10.3724/SP.J.1123.2012.02013
  • Li NT, Lu LX, Wang LB, Li XY, Zhang Y. 2008. Determination of harmful metal elements in wood material contacting with food by microwave digestion ICP-MS. Packaging Eng. 29(09):50–52. doi:10.3969/j.issn.1001-3563.2008.09.019
  • Li XZ, Xu JM, Xu M, Peng DN. 2015. Evaluation on Quality and Safety of Wood-bamboo Utensils for Food. World Forestry Research. 28(05):55–60. doi:10.13348/j.cnki.sjlyyj.2015.0027.y
  • Lin QB, Wang TJ, Song H, Wang RZ. 2011. Kinetic migration of isothiazolinone biocides from paper packaging to Tenax and Porapak. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 28(9):1294–1301. doi:10.1080/19440049.2011.584071
  • Lin XH. 2014. Studies on the toxic and harmful substances in bamboo and wooden tableware. [master’s thesis]. Fujian Agriculture and Forestry University.
  • Lu CQ, Sun Y, Shen X. 2019. Hazards analysis for the safety of chopsticks. J Food Saf Quality. 10(12):3679–3682. doi:10.3969/j.issn.2095-0381.2019.12.007
  • Lund KH, Petersen JH. 2006. Migration of formaldehyde and melamine monomers from kitchen- and tableware made of melamine plastic. Food Addit Contam. 23(9):948–955. doi:10.1080/02652030500415660
  • Ma JJ, Wang ZW, Xu J, Hu CY, Qiu TC, Huang ZY. 2022. Effect of autoclave sterilization, gamma irradiation and high-pressure processing on the migration of 4,4’-MDA and its isomers in laminated food packaging bags. Food Packag. Shelf Life. 33:100875. doi:10.1016/j.fpsl.2022.100875
  • Ma YF, Gong XA, Wang CP. 2020. Research progress in wood adhesives. Chem Ind Forest Prod. 40(02):1–15. doi:10.3969/j.issn.0253-2417.2020.02.001
  • Mao SL, Huang HS, Zhao LH, Zhang YJ, Yin HL, Lin XB. 2013. HPLC determination of 2-(thiocyanomethylthio) benzothiazole in wood products. PTCA B Chem Anal. 49(11):1352–1354 + 1359. doi:CNKI:SUN:LHJH.0.2013-11-025
  • Meléndez F, Arroyo P, Gómez-Suárez J, Palomeque-Mangut S, Suárez JI, Lozano J. 2022. Portable electronic nose based on digital and analog chemical sensors for 2,4,6-trichloroanisole discrimination. Sensors-Basel. 22(9):3453. doi:10.3390/s22093453
  • Meng XS, Lv YG, Lv Q, Deng YL, Bai H, Ma Q. 2020. Direct analysis in real time coupled with quadrupole-orbitrap high-resolution mass spectrometry for rapid analysis of pyrethroid preservatives in wooden food contact materials. Analyst. 145(8):2892–2896. doi:10.1039/c9an02619c
  • [MFDS]. Ministry of Food and Drug Safety. 2020. Standards and specifications for utensils, containers, and packages (part I). No. 2020-43. https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72433&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1.
  • MHLW. 2007. Guidelines on the monitoring of chopsticks. Food Safety Supervision Issue No. 1113001. Food Safety Foundation Issue No. 1113001. https://www.mhlw.go.jp/web/t_doc?dataId=00tb3623&dataType=1&pageNo=1.
  • Monteiro S, Bundaleski N, Malheiro A, Cabral M, Teodoro OMND. 2022. Cross contamination of 2,4,6-trichloroanisole in cork stoppers. J Agric Food Chem. 70(22):6747–6754. doi:10.1021/acs.jafc.2c02493
  • Moutounet M, Rabier P, Puech JL, Verette E, Barillere JM. 1989. Analysis by HPLC of extractable substances in oak wood. Application to a Chardonnay Wine. Sci Aliments. 9(1):35–51. doi:10.1021/je00041a036
  • Naziruddin MA, Jawaid M, Yusof NL, Abdul-Mutalib NA, Ahmad MF, Sanny M, Alzahari A. 2021. Assessment and detection of the potential contaminants from oil palm empty fruit bunch fiber-based biodegradable tray. Food Packaging Shelf Life. 29:100685. doi:10.1016/j.fpsl.2021.100685
  • Nerin C, Alfaro P, Aznar M, Domeno C. 2013. The challenge of identifying non-intentionally added substances from food packaging materials: a review. Anal Chim Acta. 775:14–24. doi:10.1016/j.aca.2013.02.028
  • Nerin C, Bourdoux S, Faust B, Gude T, Lesueur C, Simat T, Stoermer A, Van Hoek E, Oldring P. 2022. Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Addit Contam Part A. 39(3):620–643. doi:10.1080/19440049.2021.2012599
  • Niu ZY, Bao Y, Ye XW, Luo X, Ding Y. 2009. Determination of phenolic preservatives in wood products by high-performance liquid chromatography. Chin J Anal Lab. 28(06):57–60. doi:10.13595/j.cnki.issn1000-0720.2009.0164
  • Olivella MÀ, Caixach J, Planas C, Oliveras A, Jové P. 2012. Concentrations of organochlorine pesticides and 2,4,6-trichloroanisole in cork bark. Chemosphere. 86(7):754–758. doi:10.1016/j.chemosphere.2011.11.009
  • Osorio J, Aznar M, Nerin C. 2019. Identification of key odorant compounds in starch-based polymers intended for food contact materials. Food Chem. 285:39–45. doi:10.1016/j.foodchem.2019.01.157
  • Osorio J, Aznar M, Nerin C, Birse N, Elliott C, Chevallier O. 2020. Ambient mass spectrometry as a tool for a rapid and simultaneous determination of migrants coming from a bamboo-based biopolymer packaging. J Hazard Mater. 398:122891. doi:10.1016/j.chroma.2019.04.007
  • Osorio J, Dreolin N, Aznar M, Nerin C, Hancock P. 2019. Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J Chromatogr A. 1599:215–222. doi:10.1016/j.chroma.2019.04.007
  • Pang ZG, Chen FY, He L, Zhang JN, He Q, Xiang YL. 2018. Quality and safety risk analysis of disposable bamboo chopsticks. J Food Saf Qual. 9(24):6390–6394. doi:10.3969/j.issn.2095-0381.2018.24.008
  • Park S-J, Choi JC, Park S-R, Choi H, Kim M, Kim J. 2018. Migration of lead and arsenic from food contact paper into a food simulant and assessment of their consumer exposure safety. Food Addit Contam Part A. 35(12):2493–2501. doi:10.1080/19440049.2018.1547426
  • Peters RJB, Groeneveld I, Sanchez PL, Gebbink W, Gersen A, de Nijs M, van Leeuwen SPJ. 2019. Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends Food Sci Technol. 85:44–54. doi:10.1016/j.tifs.2018.12.010
  • Pino V, Ayala JH, Gonzalez V, Afonso AM. 2007. Focused microwave-assisted micellar extraction combined with solid-phase microextraction - gas chromatography/mass spectrometry to determine chlorophenols in wood samples. Anal Chim Acta. 582(1):10–18. doi:10.1016/j.aca.2006.08.054
  • Pizzi A, Papadopoulos AN, Policardi F. 2020. Wood composites and their polymer binders. Polymers. 12(5):1115. doi:10.3390/polym12051115
  • Pocas MD, Hogg T. 2007. Exposure assessment of chemicals from packaging materials in foods: a review. Trends Food Sci Technol. 18(4):219–230. doi:10.1016/j.tifs.2006.12.008
  • Qiao SH, Lin QB, Guo J, Song H, Wang RZ, Xue YY. 2015. Determination of 9 heavy metals in aluminum-plastic composite packaging by ICP-MS. Food Science. 36(18):186–189. doi:10.7506/spkx1002-6630-201518034
  • Sanchis Y, Yusa V, Coscolla C. 2017. Analytical strategies for organic food packaging contaminants. J Chromatogr A. 1490:22–46. doi:10.1016/j.chroma.2017.01.076
  • Schmied-Tobies MIH, Murawski A, Schmidt L, Rucic E, Schwedler G, Apel P, Goen T, Kolossa-Gehring M. 2021. Pentachlorophenol and nine other chlorophenols in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V). Environ Res. 196:9. doi:10.1016/j.envres.2021.110958
  • Severin I, Souton E, Dahbi L, Chagnon MC. 2017. Use of bioassays to assess hazard of food contact material extracts: state-of-the-art. Food Chem Toxicol. 105:429–447. doi:10.1016/j.fct.2017.04.046
  • Shen CS. 2008. Determination of tebuconazole in wood preservative formulations by RP-HPLC. China Wood Industry. 22(06):43–44. doi:10.19455/j.mcgy.2008.06.014
  • Shen CS. 2016. Determination pf tebuconazole in five kinds of preservative wood using solid phase extraction and HPLC. Chin Forest Prod Industry. 43(02):18–22. doi:10.19531/j.issn1001-5299.2016.02.007
  • Sheng HD, Wang J, Zhang SF, Pang XJ, Feng TT, Li GZ. 2021. Determination of six quaternary ammonium bacteriostatic agents in food contact paper by dispersive solid phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry. Sci Technol Food Industry. 42(06):271–275 + 317. doi:10.3386/j.issn1002-0306.2020050167
  • Shi LJ, Wei CX, Shi J. 2020. Investigation on the risk of potassium permanganate consumption in painted chopsticks. J Food Saf Qual. 11(04):1086–1089. doi:10.19812/j.cnki.jfsq11-5956/ts.2020.04.016
  • Silva FLF, Duarte TAO, Melo LS, Ribeiro LPD, Gouveia ST, Lopes GS, Matos WO. 2016. Development of a wet digestion method for paints for the determination of metals and metalloids using inductively coupled plasma optical emission spectrometry. Talanta. 146:188–194. doi:10.1016/j.talanta.2015.08.040
  • Six T, Feigenbaum A, Riquet AM. 2002. Mechanism of migration from agglomerated cork stoppers: I. An electron spin resonance investigation. J Appl Polym Sci. 83(12):2644–2654. doi:10.1002/app.10230
  • Slabizki P, Fischer C, Legrum C, Schmarr H-G. 2015. Characterization of atypical off-flavor compounds in natural cork stoppers by multidimensional gas chromatographic techniques. J Agric Food Chem. 63(35):7840–7848. doi:10.1021/acs.jafc.5b02793
  • Song X-C, Canellas E, Dreolin N, Goshawk J, Nerin C. 2022a. A collision cross section database for extractables and leachables from food contact materials. J Agric Food Chem. 70(14):4457–4466. doi:10.1021/acs.jafc.2c00724
  • Song X-C, Canellas E, Dreolin N, Goshawk J, Nerin C. 2022b. Identification of nonvolatile migrates from food contact materials using ion mobility–high-resolution mass spectrometry and in silico prediction tools. J Agric Food Chem. 70(30):9499–9508. doi:10.1021/acs.jafc.2c03615
  • Song X-C, Dreolin N, Damiani T, Canellas E, Nerin C. 2022. Prediction of collision cross section values: application to non-intentionally added substance identification in food contact materials. J Agric Food Chem. 70(4):1272–1281. doi:10.1021/acs.jafc.1c06989
  • Sun C, Kuang H, Xu LG, Ma W, Liu LQ, Wu XL, Zhu JP, Xu CL. 2015. Analysis of contaminants in wooden food contacting materials. Packaging Eng. 36(1):1–5. doi:10.19554/j.cnki.1001-3563.2015.01.002
  • Sun KK, Liao WB, Chen QJ, Zhang Y, Li C. 2019. Simultaneous determination of o-phenylphenol, imazalil, biphenyl, chlorothalonil and captan residues in bamboo and wooden products by gas chromatography-mass spectrometry. wwwgdchemcom. 46(21):116–117. doi:CNKI:SUN:GDHG.0.2019-21-051
  • Sun Y, Lu CQ, Wen SQ, Luo C, Liu J. 2020. Study on the exposure of heavy metal elements in the coating of chopsticks. J Food Saf Qual. 11(12):4104–4109. doi:10.19812/j.cnki.jfsq11-5956/ts.2020.12.063
  • Tarasov A, Cabral M, Loisel C, Lopes P, Schuessler C, Jung R. 2022. State-of-the-art knowledge about 2,4,6-trichloroanisole (TCA) and strategies to avoid cork taint in wine in ‘grapes and wine’. Morata A, Loira I, González C, editors London (UK): IntechOpen Limited. https://www.intechopen.com/chapters/81659.
  • Thrasher JD, Kilburn KH. 2001. Embryo toxicity and teratogenicity of formaldehyde. Arch Environ Health Int J. 56(4):300–311. doi:10.1080/00039890109604460
  • Turner A. 2018. High levels of migratable lead and cadmium on decorated drinking glassware. Sci Total Environ. 616:1498–1504. doi:10.1016/j.scitotenv.2017.10.164
  • Wang L, Li HY, Wang J, Zhang DL, Zhou XJ, Zhang HM. 2020. Study on the specific migration of pentachlorophenol (PCP) in bamboo chopsticks by liquid chromatography-mass spectrometry. XIANDAISHIPIN. (16):162–166. doi:10.16736/j.cnki.cn41-1434/ts.2020.16.046
  • Wang ZJ, Liu YH, Li T, Zhang Q, Bai H, Cai YQ, Lv Q. 2021. Wood preservatives in children’s wooden toys from China: distribution, migration, oral exposure, and risk assessment. Ecotox Environ Safe. 209:6. doi:10.1016/j.ecoenv.2020.111786
  • Wu ZH, He HT, Li C. 2018. Determination of formaldehyde in bamboo steamer by high-performance liquid chromatography. Food Industry. 39(07):311–313. doi:CNKI:SUN:SPGY.0.2018-07-082
  • Yan X, Ran WS, Li MJ, Li L, Long ZR. 2019. Formaldehyde and heavy metal migration of melamine tableware and its risk analysis. Packaging Engineering. 40(13):86–90. doi:10.19554/j.cnki.1001-3563.2019.13.012
  • Yu N, Zhou GM, Zhu J, Qu J. 2010. Determination of sulfur dioxide in disposable chopsticks by ion chromatography. Chin Public Health. 26(10):1342–1343. doi:10.11847/zgggws2010-26-10-74
  • Yu T, Li JQ, Xin JQ. 2010. Species analysis of copper in bamboo chopsticks by FAAS. PTCA B Chem Anal. 46(11):1306–1307 + 1310. doi:CNKI:SUN:LHJH.0.2010-11-024
  • Zhao D, Juhasz AL, Luo J, Li HB, Ma LQ. 2018. Metals in paints on chopsticks: solubilization in simulated saliva, gastric, and food solutions and implication for human health. Environ Res. 167:299–306. doi:10.1016/j.envres.2018.07.036
  • Zhao GS, Yuan LJ, Guo LJ, Zhou N, Wang X. 2020. Determination of sodium pentachlorophenol in disposable chopsticks by high-resolution liquid mass spectrometry. Henan J Prev Med. 31(09):696–698. doi:10.13515/j.cnki.hnjpm.1006-8414.2020.09.018
  • Zhen L. 2016. Determination of polychlorinated phenols in wooden food contact material by gas-chromatographymass spectrometry. Chin J Anal Lab. 35(10):1152–1156. doi:10.13595/j.cnki.issn1000-0720.2016.0261
  • Zhong HN, Li ZC, Chen S, Zeng Y, Zheng JG, Zeng Y, Li D. 2019. Simultaneous quantitative analysis of six isothiazolinones in water-based adhesive used for food contact materials by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Molecules. 24(21):3894. doi:10.3390/molecules24213894
  • Zhou ML, He HT, Li C. 2020. Determination of 15 antibacterial preservatives in bamboo chopsticks by high-performance liquid chromatography. Food Industry. 41(03):278–281.
  • Zhu GY, Guan J. 2007. Determination of sulfur dioxide in disposable chopsticks by ion chromatography. Chin J Health Lab Technol. 17(12):2209–2210 + 2248. doi:10.3969/j.issn.1004-8685.2007.12.032
  • Zhu Y. 2017. Development and performance of a novel wood preservative system of isothiazolone microemulsion [dissertation]. BeiJinf Forestry University. Chinese.
  • Zimmermann L, Dombrowski A, Volker C, Wagner M. 2020. Are bioplastics and plant-based materials safer than conventional plastics? In vitro toxicity and chemical composition. Environ Int. 145:11. doi:10.1016/j.envint.2020.106066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.