2,518
Views
0
CrossRef citations to date
0
Altmetric
Articles

Combined chronic dietary exposure to four nephrotoxic metals exceeds tolerable intake levels in the adult population of 10 European countries

, ORCID Icon, , , , , , , , , , , , & show all
Pages 1568-1588 | Received 25 Jul 2023, Accepted 12 Oct 2023, Published online: 03 Nov 2023

References

  • Amzal B, Julin B, Vahter M, Wolk A, Johanson G, Akesson A. 2009. Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect. 117(8):1293–1301. doi: 10.1289/ehp.0800317.
  • Berglund M, Lind B, Bjornberg KA, Palm B, Einarsson O, Vahter M. 2005. Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Environ Health. 4(1):20. doi: 10.1186/1476-069X-4-20.
  • Bil W, Ehrlich V, Chen G, Vandebriel R, Zeilmaker M, Luijten M, Uhl M, Marx-Stoelting P, Halldorsson TI, Bokkers B. 2023. Internal relative potency factors based on immunotoxicity for the risk assessment of mixtures of per- and polyfluoroalkyl substances (PFAS) in human biomonitoring. Environ Int. 171:107727. doi: 10.1016/j.envint.2022.107727.
  • Boberg J, Bredsdorff L, Petersen A, Lobl N, Jensen BH, Vinggaard AM, Nielsen E. 2021. Chemical mixture calculator - A novel tool for mixture risk assessment. Food Chem Toxicol. 152:112167. doi: 10.1016/j.fct.2021.112167.
  • Boobis AR, Ossendorp BC, Banasiak U, Hamey PY, Sebestyen I, Moretto A. 2008. Cumulative risk assessment of pesticide residues in food. Toxicol Lett. 180(2):137–150. doi: 10.1016/j.toxlet.2008.06.004.
  • Boon PE, van Donkersgoed G, Christodoulou D, Crépet A, D'Addezio L, Desvignes V, Ericsson B-G, Galimberti F, Ioannou-Kakouri E, Jensen BH, et al. 2015. Cumulative dietary exposure to a selected group of pesticides of the triazole group in different European countries according to the EFSA guidance on probabilistic modelling. Food Chem Toxicol. 79:13–31. doi: 10.1016/j.fct.2014.08.004.
  • Bopp SK, Barouki R, Brack W, Dalla Costa S, Dorne JCM, Drakvik PE, Faust M, Karjalainen TK, Kephalopoulos S, van Klaveren J, et al. 2018. Current EU research activities on combined exposure to multiple chemicals. Environ Int. 120:544–562. doi: 10.1016/j.envint.2018.07.037.
  • Bosgra S, van der Voet H, Boon PE, Slob W. 2009. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: an example with organophosphorus pesticides. Regul Toxicol Pharmacol. 54(2):124–133. doi: 10.1016/j.yrtph.2009.03.004.
  • Buchet JP, Roels H, Bernard A, Lauwerys R. 1980. Assessment of renal function of workers exposed to inorganic lead, calcium or mercury vapor. J Occup Med. 22(11):741–750.
  • Carlisle JC, Wade MJ. 1992. Predicting blood lead concentrations from environmental concentrations. Regul Toxicol Pharmacol. 16(3):280–289. doi: 10.1016/0273-2300(92)90008-w.
  • Dujardin B, Kirwan L. 2019. The raw primary commodity (RPC) model: strengthening EFSA’s capacity to assess dietary exposure at different levels of the food chain, from raw primary commodities to foods as consumed. EFSA Supporting publication 2019: EN-1532.
  • European Commission (EC). 2006. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. J Eur Union L. 364:5–24.
  • European Commission (EC). 2020. Directive (EU) 2020/2184 of the European parliament and of the council of 16 December 2020 on the quality of water intended for human consumption (recast). J Eur Union L. 345:1–62.
  • European Chemicals Agency (ECHA). 2020. ECHA Scientific report for evaluation of limit values for lead and its compounds at the workplace. Helsinki, Finland.
  • Efron B. 1979. Bootstrap methods: another look at the jackknife. Ann Statist. 7(1):1–26. doi: 10.1214/aos/1176344552.
  • Efron B, Tibshirani RJ. 1993. An introduction to the bootstrap. New York (NY): Chapman & Hall.
  • European Food Safety Authority (EFSA). 2009a. Cadmium in food. EFSA J. 980:1–139.
  • European Food Safety Authority (EFSA). 2009b. Scientific opinion on arsenic in food. EFSA J. 7(10):1351.
  • European Food Safety Authority (EFSA). 2010a. Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 8(3):1557.
  • European Food Safety Authority (EFSA). 2010b. Scientific opinion on lead in food. EFSA J. 8(8):1570.
  • European Food Safety Authority (EFSA). 2010c. Standard sample description for food and feed. EFSA J. 8(1):1457.
  • European Food Safety Authority (EFSA). 2011. Evaluation of the FoodEx, the food classification system applied to the development of the EFSA comprehensive European food consumption database. EFSA J. 9(3):1970.
  • European Food Safety Authority (EFSA). 2012a. Cadmium dietary exposure in the European population. EFSA J. 10(1):2551.
  • European Food Safety Authority (EFSA). 2012b. Lead dietary exposure in the European population1. EFSA J. 10(7):2831.
  • European Food Safety Authority (EFSA). 2012c. Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10(12):1–241.
  • European Food Safety Authority (EFSA). 2014. Guidance on expert knowledge elicitation in food and feed safety risk assessment. EFSA J. 12(6):3734.
  • European Food Safety Authority (EFSA). 2019. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17(3):e05634.
  • European Food Safety Authority (EFSA). 2020a. Cumulative dietary risk characterisation of pesticides that have acute effects on the nervous system. EFSA J. 18(4):e06087.
  • European Food Safety Authority (EFSA). 2020b. Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. EFSA J. 18(4):e06088.
  • European Food Safety Authority (EFSA). 2021a. Chronic dietary exposure to inorganic arsenic. EFSA J. 19(1):e06380.
  • European Food Safety Authority (EFSA). 2021b. Guidance document on scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 19(12):e07033.
  • Evans RM, Martin OV, Faust M, Kortenkamp A. 2016. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals? Sci Total Environ. 543(Pt A):757–764. doi: 10.1016/j.scitotenv.2015.10.162.
  • Food and Agricultural Organization of the United Nations (FAO)/World Health Organisation (WHO). 2011. Joint FAO/WHO expert consultation on the risks and benefits of fish consumption. Rome: Food and Agricultural Organization of the United Nations; Geneva: World Health Organization; p. 50.
  • Foa V, Colombi A, Maroni M, Buratti M, Calzaferri G. 1984. The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Sci Total Environ. 34(3):241–259. doi: 10.1016/0048-9697(84)90066-4.
  • Fox MA, Brewer LE, Martin L. 2017. An overview of literature topics related to current concepts, methods, tools, and applications for cumulative risk assessment (2007–2016). Int J Environ Res Public Health. 14(4):389.
  • Hays SM, Aylward LL, Gagne M, Nong A, Krishnan K. 2010. Biomonitoring equivalents for inorganic arsenic. Regul Toxicol Pharmacol. 58(1):1–9. doi: 10.1016/j.yrtph.2010.06.002.
  • Hong F, Jin T, Zhang A. 2004. Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population. Biometals. 17(5):573–580. doi: 10.1023/b:biom.0000045741.22924.d8.
  • International Program in Chemical Safety (ICPS). 2020. Dietary exposure assessment for chemicals in food. Environmental health criteria 240: principles and methods for the risk assessment of chemicals in food. Rome: Food and Agriculture Organization of the United Nations; Geneva: World Health Organization.
  • Joint Food and Agricultural Organization of the United Nations (FAO)/World Health Organization (WHO) Expert Committee on Food Additives (JECFA). 2011. Safety evaluation of certain contaminants in food. Mercury (addendum). Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No. 959. Rome: Food and Agricultural Organization of the United Nations; Geneva: World Health Organization.
  • Kortenkamp A, Scholze M, Ermler S, Priskorn L, Jorgensen N, Andersson AM, Frederiksen H. 2022. Combined exposures to bisphenols, polychlorinated dioxins, paracetamol, and phthalates as drivers of deteriorating semen quality. Environ Int. 165:107322. doi: 10.1016/j.envint.2022.107322.
  • Lamkarkach F, Ougier E, Garnier R, Viau C, Kolossa-Gehring M, Lange R, Apel P. 2021. Human biomonitoring initiative (HBM4EU): human biomonitoring guidance values (HBM-GVs) derived for cadmium and its compounds. Environ Int. 147:106337. doi: 10.1016/j.envint.2020.106337.
  • Lin T, Tai-Yi J. 2007. Benchmark dose approach for renal dysfunction in workers exposed to lead. Environ Toxicol. 22(3):229–233. doi: 10.1002/tox.20260.
  • Lin YJ, Hsiao JL, Hsu HT. 2020. Integration of biomonitoring data and reverse dosimetry modeling to assess population risks of arsenic-induced chronic kidney disease and urinary cancer. Ecotoxicol Environ Saf. 206:111212. doi: 10.1016/j.ecoenv.2020.111212.
  • Luijten M, Vlaanderen J, Kortenkamp A, Antignac JP, Barouki R, Bil W, van den Brand A, den Braver-Sewradj S, van Klaveren J, Mengelers M, et al. 2023. Mixture risk assessment and human biomonitoring: lessons learnt from HBM4EU. Int J Hyg Environ Health. 249:114135. doi: 10.1016/j.ijheh.2023.114135.
  • Martin OV, Evans RM, Faust M, Kortenkamp A. 2017. A human mixture risk assessment for neurodevelopmental toxicity associated with polybrominated diphenyl ethers used as flame retardants. Environ Health Perspect. 125(8):087016. doi: 10.1289/EHP826.
  • Organisation for Economic Co-operation and Development (OECD). 2018. Considerations for assessing the risk of combined exposure to multiple chemicals. Series on testing and assessment No. 296, Environment, Health and Safety Division, Environment Directorate, Paris, France.
  • Roels H, Gennart JP, Lauwerys R, Buchet JP, Malchaire J, Bernard A. 1985. Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med. 7(1):45–71. doi: 10.1002/ajim.4700070106.
  • Rotter S, Beronius A, Boobis AR, Hanberg A, van Klaveren J, Luijten M, Machera K, Nikolopoulou D, van der Voet H, Zilliacus J, et al. 2018. Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution. Crit Rev Toxicol. 48(9):796–814. doi: 10.1080/10408444.2018.1541964.
  • Sarigiannis D. 2022. Final report on AOPs. Deliverable Report D13.6; HBM4EU. https://www.hbm4eu.eu/work-packages/deliverable-13-6-final-report-on-aops/.
  • Scientific Committee on Occupational Exposure Limits (SCOEL) of the European Commission. 2007. Recommendation from the scientific committee on occupational exposure limits for elemental mercury and inorganic divalent mercury compounds. https://echa.europa.eu/recommendations-of-the-scoel.
  • Socianu S, Bopp SK, Govarts E, Gilles L, Buekers J, Kolossa-Gehring M, Backhaus T, Franco A. 2022. Chemical mixtures in the EU population: composition and potential risks. Int J Environ Res Public Health. 19(10):6121.
  • Sprong C, Crepet A, Metruccio F, Blaznik U, Anagnostopoulos C, Christodoulou DL, Jensen BH, Kennedy M, Gonzalez N, Rehurkova I, et al. 2020. Cumulative dietary risk assessment overarching different regulatory silos using a margin of exposure approach: a case study with three chemical silos. Food Chem Toxicol. 142:111416. doi: 10.1016/j.fct.2020.111416.
  • Sprong C, Te Biesebeek JD, Chatterjee M, Wolterink G, van den Brand A, Blaznik U, Christodoulou D, Crépet A, Hamborg Jensen B, Sokolić D, et al. 2023. A case study of neurodevelopmental risks from combined exposures to lead, methyl-mercury, inorganic arsenic, polychlorinated biphenyls, polybrominated diphenyl ethers and fluoride. Int J Hyg Environ Health. 251:114167.
  • Sun Y, Sun D, Zhou Z, Zhu G, Lei L, Zhang H, Chang X, Jin T. 2008. Estimation of benchmark dose for bone damage and renal dysfunction in a Chinese male population occupationally exposed to lead. Ann Occup Hyg. 52(6):527–533.
  • Te Biesebeek JD, Sam M, Sprong RC, van Donkersgoed G, Kruisselbrink JW, de Boer WJ, van Lenthe M, van der Voet H, van Klaveren JD. 2021. Potential impact of prioritisation methods on the outcome of cumulative exposure assessments of pesticides. EFSA Support Public. EN(6559):99.
  • van den Brand AD, Bokkers BGH, Te Biesebeek JD, Mengelers MJB. 2022. Combined exposure to multiple mycotoxins: an example of using a tiered approach in a mixture risk assessment. Toxins (Basel). 14(5):303. doi: 10.3390/toxins14050303.
  • Vejdovszky K, Mihats D, Griesbacher A, Wolf J, Steinwider J, Lueckl J, Jank B, Kopacka I, Rauscher-Gabernig E. 2019. Modified Reference Point Index (mRPI) and a decision tree for deriving uncertainty factors: a practical approach to cumulative risk assessment of food contaminant mixtures. Food Chem Toxicol. 134:110812. doi: 10.1016/j.fct.2019.110812.
  • Vejdovszky K, Mihats D, Griesbacher A, Wolf J, Steinwider J, Lueckl J, Jank B, Kopacka I, Rauscher-Gabernig E. 2021. A tiered approach to cumulative risk assessment for reproductive and developmental toxicity of food contaminants for the austrian population using the modified Reference Point Index (mRPI). Food Chem Toxicol. 147:111861. doi: 10.1016/j.fct.2020.111861.