115
Views
0
CrossRef citations to date
0
Altmetric
Articles

The fate of mycotoxins in oranges during storage and processing

, , , , , , & show all
Pages 1614-1624 | Received 02 Aug 2023, Accepted 06 Nov 2023, Published online: 27 Nov 2023

References

  • Acoglu B, Omeroglu PY. 2021a. The effect of drying processes on pesticide residues in orange (Citrus sinensis). Drying Technol. 39(13):2039–2054. doi:10.1080/07373937.2021.1946078.
  • Acoglu B, Omeroglu PY. 2021b. Effectiveness of different type of washing agents on reduction of pesticide residues in orange (Citrus sinensis). LWT. 147:111690. doi:10.1016/j.lwt.2021.111690.
  • Bragulat MR, Abarca ML, Cabañes FJ. 2008. Low occurrence of patulin- and citrinin-producing species isolated from grapes. Lett Appl Microbiol. 47(4):286–289. doi:10.1111/j.1472-765x.2008.02422.x.
  • Codex Alimentarius International Food Standards. 2017. Guidelines on performance criteria for methods of analysis for the determination of pesticide residues in food and feed (CXG 90-2017). Rome: Joint FAO/WHO Food Standards Programme.
  • Diao E, Hou H, Hu W, Dong H, Li X. 2018. Removing and detoxifying methods of patulin: a review. Trend Food Sci Technol. 81:139–145. doi:10.1016/j.tifs.2018.09.016.
  • De Berardis S, De Paola EL, Montevecchi G, Garbini D, Masino F, Antonelli A, Melucci D. 2018. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res Int. 106:677–685. doi:10.1016/j.foodres.2018.01.032.
  • EC Commission Regulation. 2006. EC, Commission Regulation (EC) No. 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs, Off. J. Eur. Union L 70 2006. 12–34; Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs, 2006.
  • Huang JY, Liao JS, Qi JR, Jiang WX, Yang XQ. 2021. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel. Food Hydrocolloids. 110:106140. doi:10.1016/j.foodhyd.2020.106140.
  • Hu S, Zhao M, Mao Q, Fang C, Chen D, Yan P. 2019. Rapid one-step cleanup method to minimize matrix effects for residue analysis of alkaline pesticides in tea using liquid chromatography-high resolution mass spectrometry. Food Chem. 299:125146. doi:10.1016/j.foodchem.2019.125146.
  • Ioi JD, Zhou T, Tsao R, M FM. 2017. Mitigation of patulin in fresh and processed foods and beverages. Toxins (Basel). 9(5):157. doi:10.3390/toxins9050157.
  • Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W. 2021. A review of chemical constituents and health-promoting effects of citrus peels. Food Chem. 365:130585. doi:10.1016/j.foodchem.2021.130585.
  • Liu Y, Heying E, Tanumihardjo SA. 2012. History, global distribution, and nutritional importance of citrus fruits. Comp Rev Food Sci Food Safe. 11(6):530–545. doi:10.1111/j.1541-4337.2012.00201.x.
  • Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, Liu Y. 2015. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J. 9(1):68. doi:10.1186/s13065-015-0145-9.
  • Logrieco A, Bottalico A, Mulé G, Moretti A, Perrone G. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Eur J Plant Pathol. 109(7):645–667. doi:10.1023/A:1026033021542.
  • Lozowicka B, Jankowska M, Hrynko I, Kaczynski P. 2016. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ Monit Assess. 188(1):51.
  • Mahato N, Sharma K, Sinha M, Cho MH. 2018. Citrus waste derived nutra-/pharmaceuticals for health benefits: current trends and future perspectives. J Funct Foods. 40:307–316. doi:10.1016/j.jff.2017.11.015.
  • Meena M, Samal S. 2019. Alternaria host-specific (HSTs) toxins: an overview of chemical characterization, target sites, regulation and their toxic effects. Toxicol Rep. 6:745–758. doi:10.1016/j.toxrep.2019.06.021.
  • Meena M, Zehra A, Dubey MK, Aamir M, Gupta VK, Upadhyay RS. 2016. Comparative evaluation of biochemical changes in tomato (Lycopersicon esculentum Mill.) infected by Alternaria alternata and its toxic metabolites (TeA, AOH, and AME). Front Plant Sci. 7:1408. doi:10.3389/fpls.2016.01408.
  • Menniti AM, Neri F, Gregori R, Maccaferri M. 2010. Some factors influencing patulin production by Penicillium expansum in pome fruits. J Sci Food Agric. 90(13):2183–2187. doi:10.1002/jsfa.4067.
  • Nan M, Xue H, Bi Y. 2022. Contamination, detection and control of mycotoxins in fruits and vegetables. Toxins (Basel). 14(5):309. doi:10.3390/toxins14050309.
  • Neri F, Donati I, Veronesi F, Mazzoni D, Mari M. 2010. Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. Int J Food Microbiol. 143(3):109–117. doi:10.1016/j.ijfoodmicro.2010.08.002.
  • Pan X, Dong F, Liu N, Cheng Y, Xu J, Liu X, Wu X, Chen Z, Zheng Y. 2018. The fate and enantioselective behavior of zoxamide during wine-making process. Food Chem. 248:14–20. doi:10.1016/j.foodchem.2017.12.052.
  • Patriarca A. 2019. Fungi and mycotoxin problems in the apple industry. Curr Opin Food Sci. 29:42–47. doi:10.1016/j.cofs.2019.08.002.
  • Pavicich MA, De Boevre M, Vidal A, Iturmendi F, Mikula H, Warth B, Marko D, De Saeger S, Patriarca A. 2020. Fate of free and modified Alternaria mycotoxins during the production of apple concentrates. Food Control. 118:107388. doi:10.1016/j.foodcont.2020.107388.
  • Puel O, Galtier P, Oswald IP. 2010. Biosynthesis and toxicological effects of patulin. Toxins (Basel)). 2(4):613–631. doi:10.3390/toxins2040613.
  • Salim D, de Caro P, Chasseray X, Sing ASC. 2022. Development of biobased emulsions for postharvest citrus fruit preservation. Sustainable Chem Pharm. 25:100583. doi:10.1016/j.scp.2021.100583.
  • Sarubbi F, Formisano G, Auriemma G, Arrichiello A, Palomba R. 2016. Patulin in homogenized fruit’s and tomato products. Food Control. 59:420–423. doi:10.1016/j.foodcont.2015.06.022.
  • Schaarschmidt S, Fauhl-Hassek C. 2021. The fate of mycotoxins during secondary food processing of maize for human consumption. Compr Rev Food Sci Food Saf. 20(1):91–148. doi:10.1111/1541-4337.12657.
  • Scott PM. 2006. Mycotoxins in alcoholic beverages and fruit juices: occurrence and analysis (S. Amer Chem, Trans.). 232nd National Meeting of the American-Chemical-Society (ACS) (Vol. 1001); Sep 10–14, 2006; San Francisco, CA; p. 170–191.
  • Solfrizzo M. 2017. Recent advances on Alternaria mycotoxins. Curr Opin Food Sci. 17:57–61. doi:10.1016/j.cofs.2017.09.012.
  • Wang Y, Shan T, Yuan Y, Zhang Z, Guo C, Yue T. 2017. Evaluation of Penicillium expansum for growth, patulin accumulation, nonvolatile compounds and volatile profile in kiwi juices of different cultivars. Food Chem. 228:211–218. doi:10.1016/j.foodchem.2017.01.086.
  • Wedamulla NE, Fan M, Choi YJ, Kim EK. 2022. Citrus peel as a renewable bioresource: transforming waste to food additives. J Funct Foods. 95:105163. doi:10.1016/j.jff.2022.105163.
  • Wei C, Yu L, Qiao N, Zhao J, Zhang H, Zhai Q, Tian F, Chen W. 2020. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon. 184:83–93. doi:10.1016/j.toxicon.2020.05.006.
  • Wei DM, Xu J, Dong FS, Liu XG, Wu XH, Zheng YQ. 2017. Penicillium and patulin distribution in pears contaminated with Penicillium expansum. Determination of patulin in pears by UHPLCMS/MS. J Integr Agric. 16(7):1645–1651. doi:10.1016/S2095-3119(16)61543-5.
  • Yigit N, Velioglu YS. 2020. Effects of processing and storage on pesticide residues in foods. Crit Rev Food Sci Nutr. 60(21):3622–3641. doi:10.1080/10408398.2019.1702501.
  • Yuan Y, Zhuang H, Zhang T, Liu J. 2010. Patulin content in apple products marketed in Northeast China. Food Control. 21(11):1488–1491. doi:10.1016/j.foodcont.2010.04.019.
  • Zhang J, Li MM, Zhang R, Jin N, Quan R, Chen DY, Francis F, Wang FZ, Kong ZQ, Fan B. 2020. Effect of processing on herbicide residues and metabolite formation during traditional Chinese tofu production. Lwt-Food Sci Technol. 131:109707. doi:10.1016/j.lwt.2020.109707.
  • Zhou J, Xu JJ, Cai ZX, Huang BF, Jin MC, Ren YP. 2017. Simultaneous determination of five Alternaria toxins in cereals using QuEChERS-based methodology. J Chromatogr B Analyt Technol Biomed Life Sci. 1068–1069:15–23. doi:10.1016/j.jchromb.2017.10.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.