138
Views
0
CrossRef citations to date
0
Altmetric
Articles

Nanoplate-based digital PCR for highly sensitive pork DNA detection targeting multi-copy nuclear and mitochondrial genes

, , , ORCID Icon, , & show all
Pages 120-133 | Received 18 Sep 2023, Accepted 13 Dec 2023, Published online: 08 Jan 2024

References

  • Ali ME, Hashim U, Mustafa S, Che Man YB, Dhahi TS, Kashif M, Uddin MK, Abd Hamid SB. 2012. Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction. Meat Sci. 91(4):454–459. doi: 10.1016/j.meatsci.2012.02.031.
  • Ali ME, Hashim U, Dhahi TS, Mustafa S, Man YBC, Latif MA. 2012. Analysis of pork adulteration in commercial burgers targeting porcine-specific mitochondrial cytochrome B Gene by TaqMan probe real-time polymerase chain reaction. Food Anal Methods. 5(4):784–794. doi: 10.1007/s12161-011-9311-4.
  • Amaral JS, Santos G, Oliveira MBP, Mafra I. 2017. Quantitative detection of pork meat by EvaGreen real-time PCR to assess the authenticity of processed meat products. Food Control. 72:53–61. doi: 10.1016/j.foodcont.2016.07.029.
  • Basanisi MG, La Bella G, Nobili G, Coppola R, Damato AM, Cafiero MA, La Salandra G. 2020. Application of the novel droplet digital PCR technology for identification of meat species. Int J of Food Sci Tech. 55(3):1145–1150. doi: 10.1111/ijfs.14486.
  • Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. 2017. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 8(3):349–369. doi: 10.1002/jcsm.12178.
  • Cai H, Gu X, Scanlan MS, Ramatlapeng DH, Lively CR. 2012. Real-time PCR assays for detection and quantitation of porcine and bovine DNA in gelatin mixtures and gelatin capsules. J Food Compos Anal. 25(1):83–87. doi: 10.1016/j.jfca.2011.06.008.
  • Cai Y, He Y, Lv R, Chen H, Wang Q, Pan L. 2017. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. PLOS One. 12(8):e0181949. doi: 10.1371/journal.pone.0181949.
  • Caldwell JM, Pérez-Díaz IM, Sandeep KP, Simunovic J, Harris K, Osborne JA, Hassan HM. 2015. Mitochondrial DNA fragmentation as a molecular tool to monitor thermal processing of plant-derived, low-acid foods, and biomaterials. J Food Sci. 80(8):M1804–14. doi: 10.1111/1750-3841.12937.
  • Food Agricultural Organization. 2010. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods. CAC/GL 74-2010. Proteins. 1–22.
  • Gerdes L, Iwobi A, Busch U, Pecoraro S. 2016. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms. Biomol Detect Quantif. 7:9–20. doi: 10.1016/j.bdq.2015.12.003.
  • Ghemrawi M, McCord B. 2022. Development of a nanoplate-based digital PCR assay for species identification with mixture deconvolution. Forensic Sci Int. 8: 193–195. doi: 10.1016/j.fsigss.2022.10.032.
  • He C, Bai L, Chen Y, Jiang W, Jia J, Pan A, Lv B, Wu X. 2022. Detection and quantification of adulterated beef and mutton products by multiplex droplet digital PCR. Foods. 11(19):3034. doi: 10.3390/foods11193034.
  • He K, Fujiwara H, Zajac C, Sandford E, Reddy P, Choi SW, Tewari M. 2019. A pipeline for faecal host DNA analysis by absolute quantification of LINE-1 and mitochondrial genomic elements using DdPCR. Sci Rep. 9(1):5599. doi: 10.1038/s41598-019-41753-6.
  • Köppel R, Ganeshan A, van Velsen F, Weber S, Schmid J, Graf C, Hochegger R. 2019. Digital duplex versus real-time PCR for the determination of meat proportions from sausages containing pork and beef. Eur Food Res Technol. 245(1):151–157. doi: 10.1007/s00217-018-3147-8.
  • Köppel R, Ganeshan A, Weber S, Pietsch K, Graf C, Hochegger R, Griffiths K, Burkhardt S. 2019. Duplex digital PCR for the determination of meat proportions of sausages containing meat from chicken, turkey, horse, cow, pig and sheep. Eur Food Res Technol. 245(4):853–862. doi: 10.1007/s00217-018-3220-3.
  • Mohamad NA, Mustafa S, Mokhtar NFK, Sheikha AFE. 2018. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules. J Sci Food Agric. 98(12):4570–4577. doi: 10.1002/jsfa.8985.
  • Mohd Asri UN, Khairil Mokhtar NF, Raja Nhari RMH, Yuswan MH, Hashim AM, Abbasiliasi S, Mohd Desa MN, Ismail A, Mustafa S. 2021. Mass spectrometry determination of potential species-specific peptide markers in commercial seasoning cubes. J Food Compos Anal. 104:104193. doi: 10.1016/j.jfca.2021.104193.
  • Morley AA. 2014. Digital PCR: a brief history. Biomol Detect Quantif. 1(1):1–2. doi: 10.1016/j.bdq.2014.06.001.
  • Nesvadbova M, Dziedzinska R, Hulankova R, Babak V, Kralik P. 2023. Quantification of the percentage proportion of individual animal species in meat products by multiplex QPCR and digital PCR. Food Control. 154:110024. doi: 10.1016/j.foodcont.2023.110024.
  • Nuraeni U, Malau J, Astuti RT, Dewantoro A, Apriori D, Lusiana ED, Prasetya B. 2023. Droplet Digital PCR versus real-time PCR for in-house validation of porcine detection and quantification protocol: an artificial recombinant plasmid approach. PLOS One. 18(7):e0287712. doi: 10.1371/journal.pone.0287712.
  • Ramos-Gómez S, Busto MD, Perez-Mateos M, Ortega N. 2014. Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils. Food Chem. 158:374–383. doi: 10.1016/j.foodchem.2014.02.142.
  • Sakai Y, Kotoura S, Yano T, Kurihara T, Uchida K, Miake K, Akiyama H, Tanabe S. 2011. Quantification of pork, chicken and beef by using a novel reference molecule. Biosci Biotechnol Biochem. 75(9):1639–1643. doi: 10.1271/bbb.110024.
  • Schrader C, Schielke A, Ellerbroek L, Johne R. 2012. PCR inhibitors – Occurrence, properties and removal. J Appl Microbiol. 113(5):1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x.
  • Specchiarello E, Carletti F, Matusali G, Abbate I, Rozera G, Minosse C, Petrivelli E, Ferraioli V, Sciamanna R, Maggi F. 2023. Development and validation of a nanoplate-based digital PCR assay for absolute MPXV quantification. J Virol Methods. 321:114802. doi: 10.1016/j.jviromet.2023.114802.
  • Tanabe S, Hase M, Yano T, Sato M, Fujimura T, Akiyama H. 2007. A real-time quantitative PCR detection method for pork, chicken, beef, mutton, and horseflesh in foods. Biosci Biotechnol Biochem. 71(12):3131–3135. doi: 10.1271/bbb.70683.
  • Temisak S, Thangsunan P, Boonnil J, Yenchum W, Hongthong K, Oss Boll H, Yata T, Rios‐Solis L, Morris P. 2021. Accurate determination of meat mass fractions using DNA measurements for quantifying meat adulteration by digital PCR. Int J Food Sci Tech. 56(12):6345–6358. doi: 10.1111/ijfs.15375.
  • Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. 2022. Application of digital PCR for public health-related water quality monitoring. Sci Total Environ. 837: 155663. doi: 10.1016/j.scitotenv.2022.155663.
  • Whale AS, De Spiegelaere W, Trypsteen W, Nour AA, Bae Y-K, Benes V, Burke D, Cleveland M, Corbisier P, Devonshire AS, et al. 2020. The digital MIQE guidelines update: minimum Information for publication of quantitative digital PCR experiments for 2020. Clin Chem. 66(8):1012–1029. doi: 10.1093/clinchem/hvaa125.
  • Witte AK, Mester P, Fister S, Witte M, Schoder D, Rossmanith P. 2016. A systematic investigation of parameters influencing droplet rain in the listeria monocytogenes PrfA assay-reduction of ambiguous results in DdPCR. PLOS One. 11(12):e0168179. doi: 10.1371/journal.pone.0168179.
  • Xu H, Ma X, Ye Z, Yu X, Liu G, Wang Z. 2022. A droplet digital PCR based approach for identification and quantification of porcine and chicken derivatives in beef. Foods. 11(20):3265. doi: 10.3390/foods11203265.
  • Yanty NM, Marikkar N., Abdulkarim M. 2014. Determination of types of fat ingredient in some commercial biscuit formulations. Int Food Res J. 21(1):277–282.
  • Yuswan MH, Aizat WM, Lokman AA, Desa MNM, Mustafa S, Junoh NM, Yusof ZNB, Mohamed R, Mohmad Z, Lamasudin DU, et al. 2018. Chemometrics-assisted shotgun proteomics for establishment of potential peptide markers of non-Halal pork (Sus Scrofa) among halal beef and chicken. Food Anal Methods. 11(12):3505–3515. doi: 10.1007/s12161-018-1327-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.