77
Views
0
CrossRef citations to date
0
Altmetric
Articles

Diazo-functionalised immunoelectrochemical sensor for the detection of ochratoxin a in foods

, , & ORCID Icon
Pages 699-713 | Received 05 Feb 2024, Accepted 01 Apr 2024, Published online: 10 Apr 2024

References

  • Ait-Touchente Z, Falah S, Scavetta E, Chehimi MM, Touzani R, Tonelli D, Taleb A. 2020. Different electrochemical sensor designs based on diazonium salts and gold nanoparticles for pico molar detection of metals. Molecules. 25(17):3903. doi:10.3390/molecules25173903.
  • Anariba F, DuVall SH, McCreery RL. 2003. Mono-and multilayer formation by diazonium reduction on carbon surfaces monitored with atomic force microscopy “scratching”. Anal Chem. 75(15):3837–3844. doi:10.1021/ac034026v.
  • Ardakani MM, Taleat Z, Beitollahi H, Salavati-Niasari M, Mirjalili B, Taghavinia N. 2008. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex–TiO2 nanoparticle modified carbon paste electrode. Electroanal Chem. 624(1-2):73–78. doi:10.1016/j.jelechem.2008.07.027.
  • Beitollahi H, Safaei M, Tajik S. 2019. Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: a review. Anal Bioanalyt Chem Res. 6(1):81–96. doi:10.1016/S1452-3981(23)15815-9.
  • Beitollahi H, Sheikhshoaie I. 2012. Electrochemical behavior of carbon nanotube/Mn (III) salen doped carbon paste electrode and its application for sensitive determination of N-acetylcysteine in the presence of folic acid. Inter J Electrochem Sci. 7(8):7684–7697. doi:10.1016/s1452-3981(23)15815-9.
  • Bonel L, Vidal JC, Duato P, Castillo JR. 2010. Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen. Anal Methods. 2(4):335–341. doi:10.1039/b9ay00297a.
  • Brooksby PA, Downard AJ. 2004. Electrochemical and atomic force microscopy study of carbon surface modification via diazonium reduction in aqueous and acetonitrile solutions. Langmuir. 20(12):5038–5045. doi:10.1021/la049616i.
  • Calado T, Fernández-Cruz ML, Verde SC, Venâncio A, Abrunhosa L. 2018. Gamma irradiation effects on ochratoxin A: degradation, cytotoxicity and application in food. Food Chem. 240:463–471. doi:10.1016/j.foodchem.2017.07.136.
  • Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, et al. 2021. Development of conductive inks for electrochemical sensors and biosensors. Microchem J. 164:105998. doi:10.1016/j.microc.2021.105998.
  • Cumba LR, Camisasca A, Giordani S, Forster RJ. 2020. Electrochemical properties of screen-printed carbon nano-onion electrodes. Molecules. 25(17):3884. doi:10.3390/molecules25173884.
  • Derar AR, Hussien EM. 2019. Disposable multiwall carbon nanotubes based screen printed electrochemical sensor with improved sensitivity for the assay of daclatasvir: hepatitis C antiviral drug. IEEE Sensors J. 19(5):1626–1632. doi:10.1109/JSEN.2018.2883656.
  • Feier B, Floner D, Cristea C, Sandulescu R, Geneste F. 2013. Development of a novel flow sensor for copper trace analysis by electrochemical reduction of 4-methoxybenzene diazonium salt. Electrochem Commun. 31:13–15. doi:10.1016/j.elecom.2013.02.025.
  • Feng X-Z, Ferranco A, Su X, Chen Z, Jiang Z, Han G-C. 2019. A facile electrochemical sensor labeled by ferrocenoyl cysteine conjugate for the detection of nitrite in pickle juice. Sensors. 19(2):268. doi:10.3390/s19020268.
  • Fernandes PJ, Barros N, Câmara JS. 2013. A survey of the occurrence of ochratoxin A in Madeira wines based on a modified QuEChERS extraction procedure combined with liquid chromatography–triple quadrupole tandem mass spectrometry. Food Res Int. 54(1):293–301. doi:10.1016/j.foodres.2013.07.020.
  • Fonseca WT, Castro KR, de Oliveira TR, Faria RC. 2021. Disposable and flexible electrochemical paper‐based analytical devices using low‐cost conductive ink. Electroanalysis. 33(6):1520–1527. doi:10.1002/elan.202060564.
  • Foroughi MM, Beitollahi H, Tajik S, Akbari A, Hosseinzadeh R. 2014. Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int. J. Electrochem. 9(12):8407–8421. doi:10.1016/S1452-3981(23)11056-X.
  • Geleta GS, Zhao Z, Wang Z. 2018. A sensitive electrochemical aptasensor for detection of Aflatoxin B2 based on a polyacrylamide/phytic acid/polydopamine hydrogel modified screen printed carbon electrode. Anal Methods. 10(38):4689–4694. doi:10.1039/C8AY01675E.
  • Gooding JJ. 2008. Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes. Electroanalysis. 20(6):573–582. doi:10.1002/elan.200704124.
  • Haji-Hashemi H, Norouzi P, Safarnejad MR, Ganjali MR. 2017. Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sens Actuators, B. 244:211–216. doi:10.1016/j.snb.2016.12.135.
  • Hajok I, Kowalska A, Piekut A, Ćwieląg-Drabek M. 2019. A risk assessment of dietary exposure to ochratoxin A for the Polish population. Food Chem. 284:264–269. doi:10.1016/j.foodchem.2019.01.101.
  • He Y, Tian F, Zhou J, Zhao Q, Fu R, Jiao B. 2020. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J Hazard Mater. 388:121758. doi:10.1016/j.jhazmat.2019.121758.
  • Jia M, Jia B, Liao X, Shi L, Zhang Z, Liu M, Zhou L, Li D, Kong W. 2022. A CdSe@ CdS quantum dots based electrochemiluminescence aptasensor for sensitive detection of ochratoxin A. Chemosphere. 287(Pt 1):131994. doi:10.1016/j.chemosphere.2021.131994.
  • Jiang D, Liu Y, Jiang H, Rao S, Fang W, Wu M, Yuan L, Fang W. 2018. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish. Biosens Bioelectron. 102:396–402. doi:10.1016/j.bios.2017.11.040.
  • Kariuki JK, McDermott MT. 2001. Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts. Langmuir. 17(19):5947–5951. doi:10.1021/la010415d.
  • Kazemipour M, Ansari M, Mohammadi A, Beitollahi H, Ahmadi R. 2009. Use of adsorptive square-wave anodic stripping voltammetry at carbon paste electrode for the determination of amlodipine besylate in pharmaceutical preparations. J Anal Chem. 64(1):65–70. doi:10.1134/S1061934809010134.
  • Kumar N, Sharma S, Nara S. 2018. Dual gold nanostructure-based electrochemical immunosensor for CA125 detection. Appl Nanosci. 8(7):1843–1853. doi:10.1007/s13204-018-0857-y.
  • Kunene K, Weber M, Sabela M, Voiry D, Kanchi S, Bisetty K, Bechelany M. 2020. Highly-efficient electrochemical label-free immunosensor for the detection of ochratoxin A in coffee samples. Sens Actuators, B. 305:127438. doi:10.1016/j.snb.2019.127438.
  • Liu G, Nguyen QT, Chow E, Böcking T, Hibbert DB, Gooding JJ. 2006. Study of Factors Affecting the Performance of Voltammetric Copper Sensors Based on Gly‐Gly‐His Modified Glassy Carbon and Gold Electrodes. Electroanalysis. 18(12):1141–1151. doi:10.1002/elan.200603546.
  • Liu Y-C, McCreery RL. 1995. Reactions of organic monolayers on carbon surfaces observed with unenhanced Raman spectroscopy. J Am Chem Soc. 117(45):11254–11259. doi:10.1021/ja00150a024.
  • Lorenzetti AS, Sierra T, Domini CE, Lista AG, Crevillen AG, Escarpa A. 2019. Electrochemically reduced graphene oxide-based screen-printed electrodes for total tetracycline determination by adsorptive transfer stripping differential pulse voltammetry. Sensors. 20(1):76. doi:10.3390/s20010076.
  • Lu X, Jiang D-J, Yan J-X, Ma Z-E, Luo X-E, Wei T-L, Xu Y, He Q-H. 2018. An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta. 179:646–651. doi:10.1016/j.talanta.2017.11.032.
  • Maatouk I, Mehrez A, Amara AB, Chayma R, Abid S, Jerbi T, Landoulsi A. 2019. Effects of gamma irradiation on ochratoxin A stability and cytotoxicity in methanolic solutions and potential application in Tunisian millet samples. J Food Prot. 82(8):1433–1439. doi:10.4315/0362-028X.JFP-18-557.
  • María‐Hormigos R, Gismera MJ, Sevilla MT, Rumbero Á, Procopio JR. 2017. Rapid and Easy Detection of Deoxynivalenol on a Bismuth Oxide Screen‐printed Electrode. Electroanalysis. 29(1):60–66. doi:10.1002/elan.201600484.
  • Mazloum-Ardakani M, Beitollahi H, Ganjipour B, Naeimi H. 2010. Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, uric acid and d-penicillamine. Int J Electrochem Sci. 5(4):531–546. doi:10.1016/S1452-3981(23)15304-1.
  • Metzner J, Luckert K, Lemuth K, Hämmerle M, Moos R. 2018. Towards an electrochemical immunosensor system with temperature control for cytokine detection. Sensors. 18(5):1309. doi:10.3390/s18051309.
  • Mohammadi SZ, Beitollahi H, Allahabadi H, Rohani T. 2019. Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification. Electroanal Chem. 847:113223. doi:10.1016/j.jelechem.2019.113223.
  • Nievierowski TH, Veras FF, Silveira RD, Giocastro B, Aloisi I, Tranchida PQ, Dugo P, Brandelli A, Zini CA, Welke JE. 2023. A Bacillus-based biofungicide agent prevents ochratoxins occurrence in grapes and impacts the volatile profile throughout the Chardonnay winemaking stages. Int J Food Microbiol. 389:110107. doi:10.1016/j.ijfoodmicro.2023.110107.
  • Pandey CM, Sumana G, Tiwari I. 2014. Nanostructuring of hierarchical 3D cystine flowers for high-performance electrochemical immunosensor. Biosens Bioelectron. 61:328–335. doi:10.1016/j.bios.2014.05.015.
  • Peng M, Zhao Z, Liang Z. 2022. Biodegradation of ochratoxin A and ochratoxin B by Brevundimonas naejangsanensis isolated from soil. Food Control. 133:108611. doi:10.1016/j.foodcont.2021.108611.
  • Liu P, Qi X, Zhang H, Zheng Y. 2021. Sensitive Electrochemical Immunosensor for Detection of Mycotoxins Aflatoxin B1 Using Disposable screen-Printed Carbon Electrode. Int J Electrochem Sci. 16(3):21033. doi:10.20964/2021.03.44.
  • Rafique S, Tabassum S, Akram R. 2020. Sensitive competitive label-free electrochemical immunosensor for primal detection of ovarian cancer. Chem Pap. 74(8):2591–2603. doi:10.1007/s11696-020-01100-w.
  • Raoof J-B, Ojani R, Beitollahi H. 2007. Electrocatalytic determination of ascorbic acid at chemically modified carbon paste electrode with 2, 7-bis (ferrocenyl ethynyl) fluoren-9-one. Int J Electrochem Sci. 2(7):534–548. doi:10.1016/S1452-3981(23)17094-5.
  • Raoof J-B, Ojani R, Beitollahi H, Hosseinzadeh R. 2006. Electrocatalytic oxidation and highly selective voltammetric determination of L-cysteine at the surface of a 1-[4-(ferrocenyl ethynyl) phenyl]-1-ethanone modified carbon paste electrode. Anal Sci. 22(9):1213–1220. doi:10.2116/analsci.22.1213.
  • Rehmat Z, Mohammed WS, Sadiq MB, Somarapalli M, Anal AK. 2019. Ochratoxin A detection in coffee by competitive inhibition assay using chitosan-based surface plasmon resonance compact system. Colloids Surf B Biointerfaces. 174:569–574. doi:10.1016/j.colsurfb.2018.11.060.
  • Righetti L, Bergmann A, Galaverna G, Rolfsson O, Paglia G, Dall’Asta C. 2018. Ion mobility-derived collision cross section database: application to mycotoxin analysis. Anal Chim Acta. 1014:50–57. doi:10.1016/j.aca.2018.01.047.
  • San L, Zeng D, Song S, Zuo X, Zhang H, Wang C, Wu J, Mi X. 2016. An electrochemical immunosensor for quantitative detection of ficolin-3. Nanotechnology. 27(25):254003. doi:10.1088/0957-4484/27/25/254003.
  • Sandomierski M, Voelkel A. 2021. Diazonium modification of inorganic and organic fillers for the design of robust composites: a review. J Inorg Organomet Polym. 31(1):1–21. doi:10.1007/s10904-020-01725-0.
  • Seguro I, Pacheco JG, Delerue-Matos C. 2021. Low cost, easy to prepare and disposable electrochemical molecularly imprinted sensor for diclofenac detection. Sensors (Basel). 21(6):1975. doi:10.3390/s21061975.
  • Singh M, Patkar RS, Vinchurkar M, Baghini MS. 2020. Cost effective soil pH sensor using carbon-based screen-printed electrodes. IEEE Sensors J. 20(1):47–54. doi:10.1109/JSEN.2019.2941695.
  • Smaniotto A, Mezalira DZ, Zapp E, Gallardo H, Vieira IC. 2017. Electrochemical immunosensor based on an azo compound for thyroid-stimulating hormone detection. Microchem J. 133:510–517. doi:10.1016/j.microc.2017.04.010.
  • Sueck F, Cramer B, Czeschinski P, Humpf HU. 2019. Human Study on the Kinetics of 2′ R‐Ochratoxin A in the Blood of Coffee Drinkers. Mol Nutr Food Res. 63(4):e1801026. doi:10.1002/mnfr.201801026.
  • Syafira RS, Devi MJ, Gaffar S, Kurnia I, Arnafia W, Einaga Y, Syakir N, Noviyanti AR, Hartati YW. Irkham 2024. Hydroxyapatite-Gold Modified Screen-Printed Carbon Electrode for Selective SARS-CoV-2 Antibody Immunosensor. ACS Appl Bio Mater. 7(2):950–960. doi:10.1021/acsabm.3c00953.
  • Tian F, Zhou J, Fu R, Cui Y, Zhao Q, Jiao B, He Y. 2020. Multicolor colorimetric detection of ochratoxin A via structure-switching aptamer and enzyme-induced metallization of gold nanorods. Food Chem. 320:126607. doi:10.1016/j.foodchem.2020.126607.
  • Torabi R, Rezvanipour AA, Heiat M. 2021. A challenging choice of aptamer for the selective enrichment of ochratoxin A. J Sep Sci. 44(4):903–907. doi:10.1002/jssc.202001044.
  • Torréns M, Ortiz M, Bejarano-Nosas D, O'Sullivan CK. 2015. Electrochemiluminescent DNA sensor based on controlled Zn-mediated grafting of diazonium precursors. Anal Bioanal Chem. 407(19):5579–5586. doi:10.1007/s00216-015-8765-4.
  • Van Chuc N, Binh NH, Thanh CT, Van Tu N, Le Huy N, Dzung NT, Minh PN, Thu VT, Dai Lam T. 2016. Electrochemical immunosensor for detection of atrazine based on polyaniline/graphene. Journal of Materials Science & Technology. 32(6):539–544. doi:10.1016/j.jmst.2016.04.004.
  • Vasilescu A, Nunes G, Hayat A, Latif U, Marty J-L. 2016. Electrochemical affinity biosensors based on disposable screen-printed electrodes for detection of food allergens. Sensors (Basel). 16(11):1863. doi:10.3390/s16111863.
  • Wang C, Qian J, Wang K, Wang K, Liu Q, Dong X, Wang C, Huang X. 2015. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosens Bioelectron. 68:783–790. doi:10.1016/j.bios.2015.02.008.
  • Yan Y, Wang W, Peng Y, Xue K, Wang J, Xiao H. 2021. Heterogeneous NiS/NiSe/3D porous biochar for As removal from water by interface engineering-induced nickel lattice distortion. Sci Total Environ. 776:145874. doi:10.1016/j.scitotenv.2021.145874.
  • Yang W, Chow E, Willett GD, Hibbert DB, Gooding JJ. 2003. Exploring the use of the tripeptide Gly–Gly–His as a selective recognition element for the fabrication of electrochemical copper sensors. Analyst. 128(6):712–718. doi:10.1039/b212881k.
  • Zhang Z, Lai J, Wu K, Huang X, Guo S, Zhang L, Liu J. 2018. Peroxidase-catalyzed chemiluminescence system and its application in immunoassay. Talanta. 180:260–270. doi:10.1016/j.talanta.2017.12.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.