159
Views
12
CrossRef citations to date
0
Altmetric
Articles

Removal of heavy metals from leachates using organic/inorganic permeable reactive barriers

, , , &
Pages 3052-3059 | Received 02 Dec 2011, Accepted 13 Jun 2012, Published online: 02 Apr 2013

References

  • Di Natale , F. , Di Natale , M. , Greco , R. , Lancia , A. , Laudante , C. and Musmarra , D. 2008 . Groundwater protection from cadmium contamination by permeable reactive barriers . J. Hazard. Mater. , 160 : 428 – 434 .
  • Komnitsas , K. , Bartzas , G. and Paspaliaris , I. 2006 . Inorganic contaminant fate assessment in zero valent iron treatment walls . Environ. Forensics , 7 : 207 – 217 .
  • Komnitsas , K. , Bartzas , G. and Paspaliaris , I. 2004 . Efficiency of limestone and red mud barriers: Laboratory column studies . Miner. Eng. , 17 : 183 – 194 .
  • Pyrzyńska , K. and Bystrzejewski , M. 2010 . Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles . Colloid Surf. A , 362 : 102 – 109 .
  • Chojnacki , A. , Chojnacka , K. , Hoffmann , J. and Gorecki , H. 2004 . The application of natural zeolites for mercury removal from laboratory tests to industrial scale . Miner. Eng. , 17 : 933 – 937 .
  • Oliva , J. , De Pablo , J. , Cortina , J.-L. , Cama , J. and Ayora , C. 2011 . Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments . J. Hazard. Mater. , 194 : 312 – 323 .
  • Hanif , A. , Bhatti , H.N. and Hanif , M.A. 2009 . Removal and recovery of Cu(II) and Zn(II) using immobilized Mentha arvensis distillation waste biomass . Ecol. Eng. , 35 : 1427 – 1434 .
  • Zhu , C.S. , Wang , L.P. and Chen , W. 2009 . Removal of Cu(II) from aqueous solution by agricultural by-product: Peanut hull . J. Hazard. Mater. , 168 : 739 – 746 .
  • Wan , M.W. , Kan , C.C. , Rogel , B.D. and Dalida , M.L.P. 2010 . Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand . Carbohyd. Polym. , 80 : 891 – 899 .
  • Robertson , W.D. 2010 . Nitrate removal rates in woodchip media of varying age . Ecol. Eng. , 36 : 1581 – 1587 .
  • Pagnanelli , F. , Viggi , C.C. , Mainelli , S. and Toro , L. 2009 . Assessment of solid reactive mixtures for the development of biological permeable reactive barriers . J. Hazard. Mater. , 170 : 998 – 1005 .
  • Schwarz , A.O. and Rittmann , B.E. 2010 . The diffusion-active permeable reactive barrier . J. Contam. Hydrol. , 112 : 155 – 162 .
  • Sasaki , K. , Takamori , H. , Moriyama , S. , Yoshizaka , H. and Hirajima , T. 2011 . Effect of saw dust on borate removal from groundwater in bench-scale simulation of permeable reactive barriers including magnesium oxide . J. Hazard. Mater. , 185 : 1440 – 1447 .
  • Ahn , J.S. , Chon , C.M. , Moon , H.S. and Kim , K.W. 2003 . Arsenic removal using steel manufacturing byproducts as permeable reactive materials in mine tailing containment systems . Water Res. , 37 : 2478 – 2488 .
  • Cundya , A.B. , Hopkinsona , L. and Whitby , R.L.D. 2008 . Use of iron-based technologies in contaminated land and groundwater remediation: A review . Sci. Total Environ. , 400 : 42 – 51 .
  • Moraci , N. and Calabrò , P.S. 2010 . Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers . J. Environ. Manage. , 91 : 2336 – 2341 .
  • McConchie , D. , Clark , M. and Fergusson , L. 2002 . The use of Bauxol technology to treat acid rock drainage . Min. Environ. Manage. , 10 : 12 – 13 .
  • Li , Y. , Wang , J. , Luan , Z. and Liang , Z. 2010 . Arsenic removal from aqueous solution using ferrous based red mud sludge . J. Hazard. Mater. , 177 : 131 – 137 .
  • Hong , J.K. , Jo , H.Y. and Yun , S.T. 2009 . Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions . J. Hazard. Mater. , 164 : 235 – 246 .
  • Wang , S. and Wu , H. 2006 . Environmental-benign utilization of fly ash low-cost adsorbents-review . J. Hazard. Mater. , 136 : 482 – 501 .
  • Komnitsas , K. , Bartzas , G. and Paspaliaris , I. 2006 . Modeling of reaction front progress in fly ash permeable reactive barriers . Environ. Forensics , 7 : 219 – 231 .
  • Bartzas , G. , Komnitsas , K. and Paspaliaris , I. 2006 . Laboratory evaluation of Fe0 barriers to treat acidic leachates . Miner. Eng. , 19 : 505 – 514 .
  • Jeen , S.-W. , Gillham , R.W. and Przepiora , A. 2011 . Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation . J. Contam. Hydrol. , 123 : 50 – 64 .
  • Arora , M. , Snape , I. and Stevens , G.W. 2011 . Toluene sorption by granular activated carbon and its use in cold regions permeable reactive barrier: Fixed bed studies . Cold Reg. Sci. Technol. , 69 : 59 – 63 .
  • Komnitsas , K. , Bartzas , G. , Fytas , K. and Paspaliaris , I. 2007 . Long-term efficiency and kinetic evaluation of ZVI barriers during clean-up of copper containing solutions . Miner. Eng. , 20 : 1200 – 1209 .
  • Bartzas , G. and Komnitsas , K. 2010 . Solid phase studies and geochemical modelling of low-cost permeable reactive barriers . J. Hazard. Mater. , 183 : 301 – 308 .
  • Calabrò , P.S. , Moraci , N. and Suraci , P. 2012 . Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater . J. Hazard. Mater. , 207–208 : 111 – 116 .
  • Gibert , O. , de Pablo , J. , Cortina , J.L. and Ayora , C. 2002 . Treatment of acid mine drainage by sulfate-reducing bacteria using permeable reactive barrier: A review from laboratory to full-scale experiments . Rev. Environ. Sci. Biotechnol. , 1 : 327 – 333 .
  • Harris , M.A. and Ragusa , S. 2000 . Bacterial mitigation of pollutants in acid drainage using decomposable plant material and sludge . Environ. Geol. , 40 : 195 – 215 .
  • Lyew , D. , Knowles , R. and Sheppard , J. 1994 . The biological treatment of acid mine drainage under continuous flow conditions in a reactor . Proc. Safety Environ. Prot. B. , 72 : 42 – 47 .
  • Elliott , P. , Ragusa , S. and Catcheside , D. 1998 . Growth of sulfate reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage . Water Res. , 32 : 3724 – 3730 .
  • Westerhoff , P. , Haan , M.D. , Martindale , A. and Badruzzaman , M. 2006 . Arsenic adsorptive media technology selection strategies . Water Qual. Res. J. Can. , 41 : 171 – 184 .
  • McCullough , C.D. and Lund , M.A. 2011 . Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste . J. Environ. Manage. , 92 : 2419 – 2426 .
  • Muchitsch , N. , van Nooten , T. , Bastiaen , L. and Kjeldsen , P. 2011 . Integrated evaluation of the performance of a more than seven year old permeable reactive barrier at a site contaminated with chlorinated aliphatic hydrocarbons (CAHs) . J. Contam. Hydrol. , 126 : 258 – 270 .
  • Crittenden , J.C. , Reddy , P.S. , Arora , H. , Trynoski , J. , Hand , D.W. , Perram , D.L. and Summers , R.S. 1991 . Predicting GAC performance with rapid small-scale column tests . J. Am. Water Works Ass. , 83 : 77 – 87 .
  • Westerhoff , P. , Highfield , D. , Badruzzaman , M. and Yoon , Y. 2005 . Rapid small-scale column tests for arsenate removal in iron oxide packed bed columns . J. Environ. Eng. , 131 : 262 – 271 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.