120
Views
13
CrossRef citations to date
0
Altmetric
Articles

Heterogeneous catalytic ozonation of diethyl phthalate

, , &
Pages 6698-6710 | Received 19 Sep 2012, Accepted 10 Jan 2013, Published online: 11 Feb 2013

References

  • C.A. Staples, D.R. Peterson, T.F. Parkerton, W.J. Adams, The environmental fate of phthalate esters: A literature review. Chemosphere 35 (1997) 667–749.
  • S. Jobling, T. Reynolds, R. White, M.G. Parker, J.P. Sumpter, A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ. Health Perspect. 103 (1995) 582–587.
  • E.M. Zou, M. Fingerman, Effects of estrogenic xenobiotics on molting of the water flea, daphnia magna. Ecotoxicol. Environ. Saf. 38 (1997) 281–285.
  • A.C. Vidaeff, L.E. Sever, In utero exposure to environmental estrogens and male reproductive health: A systematic review of biological and epidemiologic evidence. Reprod. Toxicol. 20 (2005) 5–20.
  • G.R. Zhang, K.F. Reardon, Parametric study of diethyl phthalate biodegradation. Biotechnol. Lett. 12 (1990) 699–704.
  • M.J. Bauer, R. Herrmann, A. Martin, H. Zellmann, Chemodynamics, transport behaviour and treatment of phthalic acid esters in municipal landfill leachates. Water Sci. Technol. 38 (1998) 185–192.
  • M.J. Bauer, R. Herrmann, Estimation of the environmental contamination by phthalic acid esters leaching from household wastes. Sci. Total Environ. 208 (1997) 49–57.
  • A. Yasuhara, H. Shiraishi, M. Nishikawa, T. Yamamoto, T. Uehiro, O. Nakasugi, T. Okumura, K. Kenmotsu, H. Fukui, M. Nagase, Y. Ono, Y. Kawagoshi, K. Baba, Y. Noma, Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography–mass spectrometry. J. Chromatogr. A 774 (1997) 321–332.
  • R.J. Slack, J. Gronow, N. Voulvoulis, Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 337 (2005) 119–137.
  • I. Mersiowsky, M. Weller, J.R. Ejlertsson, Fate of plasticised PVC products under landfill conditions: A laboratory-scale landfill simulation reactor study. Water Res. 35 (2001) 3063–3070.
  • S. Jonsson, J. Ejlertsson, A. Ledin, I. Mersiowsky, B.H. Svensson, Mono- and diesters from o-phthalic acid in leachates from different European landfills. Water Res. 37 (2003) 609–617.
  • T. Eggen, M. Moeder, A. Arukwe, Municipal landfill leachates: A significant source for new and emerging pollutants. Sci. Total Environ. 408 (2010) 5147–5157.
  • M. Wensing, E. Uhde, T. Salthammer, Plastics additives in the indoor environment—flame retardants and plasticizers. Sci. Total Environ. 339 (2005) 19–40.
  • T.J. Wams, Diethylhexylphthalate as an environmental contaminant—a review. Sci. Total Environ. 66 (1987) 1–16.
  • D.F. Cadogan, Health and environmental effects of phthalate plasticisers for poly(vinyl chloride)—an update. Plast. Rubber Compos. 28 (1999) 476–481.
  • J. Schwarzbauer, S. Heim, S. Brinker, R. Littke, Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res. 36 (2002) 2275–2287.
  • Y. Xu, Y. Zhou, D. Wang, S. Chen, J. Liu, Z. Wang, Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology. J. Environ. Sci. 20 (2008) 1281–1287.
  • G.H. Tan, Residue levels of phthalate-esters in water and sediment samples from the Klang river basin. Bull. Environ. Contam. Toxicol. 54 (1995) 171–176.
  • A. Thuren, Determination of phthalates in aquatic environments. Bull. Environ. Contam. Toxicol. 36 (1986) 33–40.
  • M. Vitali, M. Guidotti, G. Macilenti, C. Cremisini, Phthalate esters in freshwaters as markers of contamination sources—a site study in Italy. Environ. Int. 23 (1997) 337–347.
  • T. Colborn, F.S.V. Saal, A.M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101 (1993) 378–384.
  • EPA, Priority Pollutants. Available from: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm (last update 13 December 2011), EPA, 2011.
  • B.V. Chang, C.S. Liao, S.Y. Yuan, Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan. Chemosphere 58 (2005) 1601–1607.
  • B. Xu, N.-Y. Gao, X.-F. Sun, S.-J. Xia, M. Rui, M.-O. Simonnot, C. Causserand, J.-F. Zhao, Photochemical degradation of diethyl phthalate with UV/H2O2. J. Hazard. Mater. 139 (2007) 132–139.
  • G.-P. Yang, X.-K. Zhao, X.-J. Sun, X.-L. Lu, Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. J. Hazard. Mater. 126 (2005) 112–118.
  • A. Muneer, J. Theurich, D. Bahnemann, Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate. J. Photochem. Photobiol. A. 143 (2001) 213–219.
  • L. Mansouri, L. Bousselmi, Degradation of diethyl phthalate (DEP) in aqueous solution using TiO2/UV process. Desalin. Water Treat. 40 (2012) 63–68.
  • B. Legube, S. Guyon, H. Sugimitsu, M. Dore, Ozonation of some aromatic-compounds in aqueous-solution—styrene, benzaldehyde, naphthalene, diethylphthalate, ethyl and chloro benzenes. Ozone Sci. Eng. 5 (1983) 151–170.
  • B.S. Oh, Y.J. Jung, Y.J. Oh, Y.S. Yoo, J.-W. Kang, Application of ozone, UV and ozone/UV processes to reduce diethyl phthalate and its estrogenic activity. Sci. Total Environ. 367 (2006) 681–693.
  • G. Wen, J. Ma, Z.-Q. Liu, L. Zhao, Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. J. Hazard. Mater. 195 (2011) 371–377.
  • B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl. Catal. B-Environ. 46 (2003) 639–669.
  • J. Nawrocki, B. Kasprzyk-Hordern, The efficiency and mechanisms of catalytic ozonation. Appl. Catal. B-Environ. 99 (2010) 27–42.
  • C. Tizaoui, L. Mansouri, L. Bousselmi, Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment. Water Sci. Technol. 55 (2007) 237–243.
  • T.F. de Oliveira, O. Chedeville, B. Cagnon, H. Fauduet, Degradation kinetics of DEP in water by ozone/activated carbon process: Influence of pH. Desalination 269 (2011) 271–275.
  • T.F. de Oliveira, O. Chedeville, H. Fauduet, B. Cagnon, Use of ozone/activated carbon coupling to remove diethyl phthalate from water: Influence of activated carbon textural and chemical properties. Desalination 276 (2011) 359–365.
  • J.S. Noh, J.A. Schwarz, Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130 (1989) 157–164.
  • J.-C. Charpentier, Mass transfer rates in gas–liquid absorbers and reactors. in: T.B. Drew, G.R. Cokelet, J.W. Hoopes (Eds.) Advances in Chemical Engineering. Academic Press, New York, NY, 1981, pp. 1–133.
  • A.C. Lewis, D.J. Roberts, New techniques for following the oxidation of sodium sulfite in mass-transfer studies. Ind. Eng. Chem. Res. 44 (2005) 183–185.
  • L.S. Clescerl, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, 1998.
  • F. Silva, J.I. Ume, A.W. Scamni, L.R. Radovic, Effects of surface chemistry of activated carbon on the adsorption of aromatics containing electron-withdrawing and electron-donating functional groups. Abstr. Pap. Am. Chem. Soc. 211 (1996) 461–465.
  • J.S. Noh, J.A. Schwarz, Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28 (1990) 675–682.
  • M. Kordac, M. Opletal, V. Linek, Measurement of mass transfer characteristics of gas/liquid reactors by sulphite system using on-line monitoring UV absorption. Chem. Eng. J. 167 (2011) 314–321.
  • V. Linek, V. Vacek, Chemical-engineering use of catalyzed sulfite oxidation-kinetics for the determination of mass-transfer characteristics of gas–liquid contactors. Chem. Eng. Sci. 36 (1981) 1747–1768.
  • F. Beltran, Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers, Boca Raton, FL, 2004.
  • J.A. Roth, D.E. Sullivan, Solubility of ozone in water. Ind. Eng. Chem. Fundam. 20 (1981) 137–140.
  • C. Tizaoui, N. Grima, Kinetics of the ozone oxidation of reactive orange 16 azo-dye in aqueous solution. Chem. Eng. J. 173 (2011) 463–473.
  • U. Von Gunten, Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37 (2003) 1469–1487.
  • T. Garoma, S. Matsumoto, Ozonation of aqueous solution containing bisphenol A: Effect of operational parameters. J. Hazard. Mater. 167 (2009) 1185–1191.
  • J. Staehelin, J. Hoigne, Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 16 (1982) 676–681.
  • J. Hoigne, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non-dissociating organic compounds. Water Res. 17 (1983) 173–183.
  • F.J. Beltran, J. Rivas, P. Alvarez, R. Montero-de-Espinosa, Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone Sci. Eng. 24 (2002) 227–237.
  • P.M. Alvarez, J.F. Garcia-Araya, F.J. Beltran, I. Giraldez, J. Jaramillo, V. Gomez-Serrano, The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon 44 (2006) 3102–3112.
  • M. Sanchez-Polo, U. von Gunten, J. Rivera-Utrilla, Efficiency of activated carbon to transform ozone into OOH radicals: Influence of operational parameters. Water Res. 39 (2005) 3189–3198.
  • Y.J. Jung, B.S. Oh, K.S. Kim, M. Koga, R. Shinohara, J.-W. Kang, The degradation of diethyl phthalate (DEP) during ozonation: oxidation by-products study. J. Water Health 8 (2010) 290–298.
  • C. Tizaoui, N.M. Grima, M.Z. Derdar, Effect of the radical scavenger t-butanol on gas–liquid mass transfer. Chem. Eng. Sci. 64 (2009) 4375–4382.
  • J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, Water Treatment: Principles and Design. second ed. ed. John Wiley & Sons, Hoboken, NJ, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.