108
Views
25
CrossRef citations to date
0
Altmetric
Articles

Biosorption of Cr6+ from aqueous solution by sugarcane bagasse

, , &
Pages 5912-5922 | Received 01 Jan 2013, Accepted 29 May 2013, Published online: 25 Jun 2013

References

  • N. Tewari, P. Vasudevan, B.K. Guha, Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem. Eng. J. 23 (2005) 185–192.
  • E. Oguz, Adsorption characteristics and the kinetics of the Cr(VI) on the Thuja Oriantalis. Colloids Surf. A 252 (2005) 121–128.
  • H. Zghida, M. Hassen, V. Baouab, R. Gautheir, Sorption of chromium oxy-anions onto cationized lingo-cellulosic material. J. Appl. Polym. Sci. 87 (2003) 1660–1665.
  • S. Arivoli, B.R. Venkatraman, T. Rajachandsekar, M. Hema, Adsorption of ferrous ion from aqueous solution by low cost activated carbon obtained from natural plant material. Res. J. Chem. Environ. 17 (2007) 70–78.
  • G. Blázquez, M.A. Martin-Lara, E. Dionisio-Ruiz, G. Tenorio, M. Calero, Evaluation and comparison of the biosorption process of copper ions onto olive stone and pine bark. J. Ind. Eng. Chem. 17 (2011) 824–833.
  • M. Gavrilescu, Removal of heavy metals from the environment by biosorption. Eng. Life Sci. 4 (2004) 219–232.
  • F. Umar, A. Janusz, M.A.K. Kozinski, A. Makshoof, Biosorption of heavy metal ions using wheat based biosorbents. Bioresour. Technol. 101 (2010) 5043–5053.
  • G. Blázquez, M. Calero, F. Hernáinz, G. Tenorio, M.A. Martín-Lara, Batch and continuous packed column studies of chromium(III) biosorption by olive stone. Environ. Prog. Sustain. 30 (2011) 576–585.
  • M.A. Martín-Lara, G. Blázquez, A. Ronda, I.L. Rodríguez, M. Calero, Multiple biosorption–desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone. J. Ind. Eng. Chem. 18 (2012) 1006–1012.
  • A.E. Okoronkwo, S.J. Olusegun, Biosorption of nickel using unmodified and modified lignin extracted from agricultural waste. Desalin. Water Treat. 51 (2012) 1989–1997.
  • Y. Ding, D. Jing, H. Gong, L. Zhou, X. Yang, Biosorption of aquatic cadmium(II) by unmodified rice straw. Bioresour. Technol. 114 (2012) 20–25.
  • P.S. Saha, A. Dey, P. Marik, Batch removal of chromium (VI) from aqueous solutions using wheat shell as adsorbent: Process optimization using response surface methodology. Desalin. Water Treat. 39 (2012) 95–102.
  • Y. Chen, L. Ding, J. Nie, Isotherm and thermodynamic studies of the biosorption of lead, cadmium and copper from aqueous solutions by rice bran. Desalin. Water Treat. 44 (2012) 168–173.
  • D. Harikishore Kumar Reddy, K. Seshaiah, A.V.R. Reddy, S.M. Lee, Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydr. Polym. 88 (2012) 1077–1086.
  • K.M. Doke, M. Yusufi, R.D. Joseph, E.M. Khan, Biosorption of hexavalent chromium onto wood apple shell: Equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat. 50 (2012) 170–179.
  • S.C. Ibrahim, M.A.K.M. Hanafiah, M.Z.A. Yahya, Removal of cadmium from aqueous solutions by adsorption onto sugarcane bagasse. American-Eurasian J. Agric. Environ. Sci. 1 (2006) 179–184.
  • O. Karnitz, L.V.A. Gurgel, J.C.P. De Melo, V.R. Botaro, T.M.S. Melo, R.P. de Freitas Gil, L.F. Gil, Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 98 (2007) 1291–1297.
  • I. Alomá, M.A. Martín-Lara, I.L. Rodríguez, F. Blázquez, M. Calero, Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 43 (2012) 275–281.
  • Inés de la C. Alomá, Tecnología sostenible para la obtención de un biosorbente de metales pesados a partir del bagazo de caña de azúcar [Sustainable technology for the production of a heavy metal biosorbent from sugarcane bagasse]. Tesis en opción del grado de Doctor en Ciencias Técnicas, Departamento Ingeniería Química, Universidad Central “Marta Abreu “de las Villas, Cuba, 2011.
  • R. Sips, Structure of a Catalyst Surface. Chemical Instrumental Nueva Editorial Interamericana, México, 1948.
  • J.E. Basurco Cayllahua, R.J. de Carvalho, M.L. Torem, Evaluation of equilibrium, kinetic and thermodynamic parameters for biosorption of nickel(II) ions onto bacteria strain, Rhodococcus opacus. Miner. Eng. 22 (2009) 1318–1325.
  • M.A. Martín-Lara, I.L. Rodriguez, Inés de la C. Alomá, G. Blázquez, M. Calero, Modification of the sorptive characteristics of sugarcane bagasse for removing lead from aqueous solutions. Desalination 256 (2010) 58–63.
  • F. Cortés, Evaluación del impacto ambiental que provoca la tecnología empleada para la obtención y uso de un biosorbente de metales pesados a partir del bagazo de caña químicamente activado. Tesis en opción al grado de Master en Ingeniería en Saneamiento Ambiental, Departamento Ingeniería Química, Universidad Central “Marta Abreu” de Las Villas, Cuba, 2006.
  • J. Brito, Propuesta de una tecnología para obtener un biosorbente de Cr3+ a partir del bagazo de caña. Escalado a nivel de planta piloto [A technology to obtain a biosorbent for Cr3+ from sugarcane bagasse. Plant pilot scale-up]. Tesis en opción al grado Master en Análisis de Proceso, Departamento de Ingeniería Química, Universidad Central “Marta Abreu” de Las Villas, Cuba, 2006.
  • H. Teng, Y. Wei, Thermogravimetric studies on the kinetics of rice husk pyrolysis and the influence of water treatment. Indian Eng. Chem. Res. 37 (1998) 3806–3811.
  • Y.C. Sharma, C.H. Weng, Removal of chromium(VI) from water and wastewater by using riverbed sand: Kinetic and equilibrium studies. J. Hazard. Mater. 142 (2007) 449–454.
  • Inés de la C. Alomá, Evaluación de la operación de adsorción de metales pesados empleando columnas rellenas con bagazo de caña químicamente modificado y propuesta de escalado a nivel de planta piloto [Evaluation of heavy metals adsorption using packed-bed-columns with chemically modified sugarcane bagasse and the proposal of scale-up pilot plant]. Tesis en opción al grado Master en Ingeniería en Saneamiento Ambiental, Departamento de Ingeniería Química, Universidad Central “Marta Abreu” de Las Villas, Cuba, 2006.
  • Y. González, I.L. Rodríguez, E. Guibal, M. Calero, M.A. Martín-Lara, Biosorption of hexavalent chromium from aqueous solution by Sargassum muticum brown alga. Application of statistical design for process optimization. Chem. Eng. J. 183 (2012) 68–76.
  • O.D. Uluozlu, A. Sarı, M. Tuzen, M. Soylak, Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresour. Technol. 99 (2008) 2972–2980.
  • M. Erdem, H.S. Altundogan, F. Tumen, Removal of hexavalent chromium by using heat-activated bauxite. Miner. Eng. 17 (2004) 1045–1052.
  • Z. Sadaoui, S. Hemidouche, O. Allalou, Removal of hexavalent chromium from aqueous solutions by micellar compounds. Desalination 249 (2009) 768–773.
  • S. Lagergren, About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl. 24 (1898) 1–39.
  • Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70 (1978) 115–124.
  • W.J. Weber, J.C. Morris, Advances in Water Pollution Research: Removal of Biologically Resistant Pollutant from Waste Water by Adsorption, International Conference on Water Pollution Symposium. Pergamon, Oxford, 1962. pp. 231–266.
  • Y.S. Ho, D.A.J. Wase, C.F. Forster, Kinetics studies of competitive heavy metal adsorption by sphagnum moss peat. Environ. Technol. 17 (1996) 71–77.
  • M. Stanley, Environmental Chemistry. 4th ed. Lewis, Boston, MA, 1990. pp. 155.
  • Y.S. Ho, S.G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34 (1999) 451–465.
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40 (1918) 1361–1403.
  • Y.A. Aydın, N.D. Aksoy, Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics. Chem. Eng. J. 151 (2009) 188–194.
  • T.S. Singh, K.K. Pant, Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Sep. Purif. Technol. 36 (2004) 139–147.
  • S.P. Dubey, K. Gopal, Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: A comparative study. J. Hazard. Mater. 145 (2007) 465–470.
  • H. Freundlich, Colloid and Capillary Chemistry. Methuen, London, UK, 1926.
  • M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem. Rev. 60 (1960) 235–236.
  • V. Sarin, K.K. Pant, Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 97 (2006) 15–20.
  • A. Sari, M. Tuzen, Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 160 (2008) 349–355.
  • A. Sari, M. Tuzen, Removal of Cr(VI) from aqueous solution by Turkish Vermiculite: Equilibrium, thermodynamic and kinetic studies. Sep. Sci. Technol. 43 (2008) 3563–3581.
  • B. Volesky, Sorption and Biosorption. BV Sorbex, Montreal, 2003.
  • K. Morshedzadeh, H.R. Soheilizadeh, S. Zangoie and M. Aliabadi, Removal of chromium from aqueous solutions by lignocellulosic solid wastes, 1st. Environment conference, Tehran University, Department of Environment Engineering, 2007.
  • E.A. Oliveira, S.F. Montanher, A.D. Andrade, J.A. Nobrega, M.C. Rollemberg, Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40 (2005) 3485–3490.
  • M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. J. Hazard. Mater. 141 (2006) 77–85.
  • Y.S. Ho, Removal of copper ions from aqueous solution by tree fern. Water Res. 37 (2003) 2323–2330.
  • K.K. Singh, A.K. Singh, S.H. Hasan, Low cost biosorbent wheat bran for the removal of cadmium from wastewater: Kinetic and equilibrium studies. Bioresour. Technol. 97 (2006) 994–1001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.