96
Views
18
CrossRef citations to date
0
Altmetric
Articles

Equilibrium and kinetics of Pb2+ adsorption from aqueous solution by dendrimer/titania composites

, , &
Pages 5869-5875 | Received 29 Dec 2012, Accepted 01 Jun 2013, Published online: 11 Jul 2013

References

  • S.H. Jang, G.Y. Jeong, B.G. Min, W.S. Lyoo, S.C. Lee, Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. J. Hazard. Mater. 159 (2008) 294–299.
  • C. Liu, R. Bai, Q.S. Ly, Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 42 (2008) 1511–1522.
  • F. Iemma, G. Crillo, U.G. Spizzirri, F. Puoci, O.I. Parisi, N. Picci, Removal of metal ions from aqueous solution by chelating polymeric microspheres bearing phytic acid derivatives. Eur. Polym. J. 44 (2008) 1183–1190.
  • X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir 25 (2009) 3–8.
  • M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead(II) on activated carbon prepared from coconut shell. J. Colloid Interface Sci. 79 (2004) 307–313.
  • C.L. Ake, K. Mayura, H. Huebner, G.R. Bratton, T.D. Phillips, Development of porous clay-based composites for the sorption of lead from water. J. Toxicol. Environ. Health Part A 63 (2001) 459–475.
  • S. Tunali, T. Akar, A.S. Özcan, I. Kiran, A. Özcan, Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep. Purif. Technol. 47 (2006) 105–112.
  • B.E. Reed, W. Lin, M.R. Matsumoto, J.N. Jensen, Physicochemical processes. Water Environ. Res. 69 (1997) 444–461.
  • M. Maroulis, A. Economou, A. Voulgaropoulos, Determination of Cd and Pb in phosphorites and phosphate fertilizers by means of a portable voltammetric analyzer based on “virtual instrumentation”. Electroanalysis 19 (2007) 2149–2154.
  • K. Saito, I. Taninaka, S. Murakami, A. Muromatsu, Extraction behaviour of copper(II) and silver(I) with a thiacrown ether carboxylic acid, 2-(3,6,10,13-tetrathiacyclotetradec-1-oxy) hexanoic acid. Talanta 46 (1998) 1187–1194.
  • D.A. Blake, R.C. Blake, M. Khosraviani, A.R. Pavlov, Immunoassays for metal ions. Anal. Chim. Acta 376 (1998) 13–19.
  • K. Brajter, E. Dabekzlotorzynska, Separation of metal ions on a modified aluminium oxide. Talanta 37 (1990) 613–618.
  • C.B. Diaz, M.P. Pardavé, M.R. Romo, F.U. Nuñez, Lead removal from wastewater using Cu(II) polymethacrylate formed by gamma radiation. J. Polym. Res. 12 (2005) 421–428.
  • D. Mohan, C.U. Pittman Jr, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137 (2006) 762–811.
  • S. Rengaraj, Y.K. Kim, C.K. Joo, J. Yi, Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: Kinetics and equilibrium. J. Colloid Interface Sci. 273 (2004) 14–21.
  • A. Benhamou, M. Baudu, Z. Derriche, J.P. Basly, Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48. J. Hazard. Mater. 171 (2009) 1001–1008.
  • N. Sankararamakrishnan, N. Kumar, V.S. Chauhan, Modeling fixed bed column for cadmium removal from electroplating wastewater. Sep. Purif. Technol. 63 (2008) 213–219.
  • A.T. Paulino, L.B. Santos, J. Nozaki, Removal of Pb2+, Cu2+, and Fe3+ from battery manufacture wastewater by chitosan produced from silkworm chrysalides as a low-cost adsorbent. React. Funct. Polym. 68 (2008) 634–642.
  • C. Zhu, Z. Luan, Y. Wang, X. Shan, Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM). Sep. Purif. Technol. 57 (2007) 161–169.
  • E. Pehlivan, B.H. Yanık, G. Ahmetli, M. Pehlivan, Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 99 (2008) 3520–3527.
  • E. Pehlivan, G. Arslan, Removal of metal ions using lignite in aqueous solution-low cost biosorbents. Fuel Process Technol. 88 (2007) 99–106.
  • K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50 (2003) 23–28.
  • M. Ajmal, R.A.K. Rao, J. Anwar, J. Ahmad, R. Ahmad, Adsorption studies on rice husk: removal and recovery of Cd (II) from waste water. Bioresour. Technol. 86 (2003) 147–149.
  • M. Teker, M. Imamoglu, O. Saltabas, Adsorption of copper and cadmium ions by activated carbon from rice hulls. Turk. J. Chem. 23 (1999) 185–192.
  • M.A. Stylianou, V.J. Inglezakis, K.G. Moustakas, SPh Malamis, M.D. Loizidou, Removal of Cu(II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination 215 (2007) 133–142.
  • F. Asadi, H. Shariatmadari, N. Mirghaffari, Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. J. Hazard. Mater. 154 (2008) 451–458.
  • F. Kaczala, M. Marques, W. Hogland, Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Bioresour. Technol. 100 (2009) 235–243.
  • P. King, P. Srinivas, Y.P. Kumar, V.S.R.K. Prasad, Sorption of copper(II) ion from aqueous solution by Tectongrandisl.f. (teak leaves powder). J. Hazard. Mater. 136 (2006) 560–566.
  • Y. Orhan, H. Buyukgungor, The removal of heavy metals by using agricultural wastes. Water Sci. Technol. 28 (1993) 247–255.
  • N.T. Abdel-Ghani, M.M. Hefny, G.A. El-Chaghaby, Removal of metal ions from synthetic wastewater by adsorption onto Eucalyptus Camaldulemis tree leaves. J. Chil. Chem. Soc. 53 (2008) 1585–1587.
  • D.A. Tomalia, A.M. Naylor, W.A. Goddard, Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl. 29 (1990) 138–175.
  • W. Huang, J.N. Kuhn, C.K. Tsung, Y. Zhang, S.E. Habas, P. Yang, G.A. Somorjai, Dendrimer templated, synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. 8 (2008) 2027–2034.
  • R.W. Scott, O.M. Wilson, R.M. Crooks, Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109 (2005) 692–704.
  • M. Lard, S.H. Kim, S. Lin, P. Bhattacharya, P.C. Ke, M.H. Lamm, Fluorescence resonance energy transfer between phenanthrene and PAMAM dendrimers. Phys. Chem. 12 (2010) 9285–9291.
  • K.M. Kitchens, H. Ghandehari, PAMAM dendrimers as nanoscale oral drug delivery systems. in: M.M. de Villiers, P. Aramwit, G.S. Kwon (Eds.) Nanotechnology in Drug Delivery. Springer, New York, 2009, pp. 423–459.
  • M.A. Mintzer, M.W. Grinstaff, Biomedical applications of dendrimers: A tutorial. Chem. Soc. Rev. 40 (2011) 173–190.
  • D. Astruc, F. Chardac, Dendritic catalysts and dendrimers in catalysis. Chem. Rev. 101 (2001) 2991–3024.
  • V.S. Myers, M.G. Weir, E.V. Carino, D.F. Yancey, S. Pande, R.M. Crooks, Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications. Chem. Sci. 2 (2011) 1632–1646.
  • M. Labieniec, C. Watala, PAMAM dendrimers–diverse biomedical applications. Facts and unresolved questions. Cent. Eur. J. Biol. 4 (2009) 434–451.
  • D. Yamamoto, S. Watanabe, M.T. Miyahara, Coordination and reduction processes in the synthesis of dendrimer-encapsulated Pt nanoparticles. Langmuir 26 (2010) 2339–2345.
  • M.A. Barakat, M.H. Ramadan, M.A. Al-Ghamdi, S.S. Al-Garny, H.L. Woodcock, J.N. Kuhn, Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by dendrimer/titania composites. J. Environ. Manage. 117 (2013) 50–57.
  • K.K. Panday, G. Prasad, V.N. Singh, Copper (II) removal from aqueous solution by fly ash. Water Res. 19 (1985) 869–873.
  • S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. J. Biotechnol. 8 (2005) 43–53.
  • Y. Liu, X. Shen, Q. Xian, H. Chen, H. Zou, S. Gao, Adsorption of copper and lead in aqueous solution onto bentonite modified by 4-methylbenzo-15-crown-5. J. Hazard. Mater. 137 (2006) 1149–1155.
  • A. Sari, M. Tuzen, D. Cıtak, M. Soylak, Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. J. Hazard. Mater. 148 (2007) 387–394.
  • A. Demirbas, E. Pehlivan, F. Gode, T. Altun, G. Arslan, Adsorption of Cu(II), Zn(II), Ni(II), Pb(II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. 282 (2005) 20–25.
  • V.K. Garg, R. Gupta, R. Kumar, R.K. Gupta, Adsorption of chromium from aqueous solution on treated sawdust. Bioresour. Technol. 92 (2004) 79–81.
  • H.Z. Mousav, S.R. Seyedi, Kinetic and equilibrium studies on the removal of Pb (II) from aqueous solution using nettle ash. J. Chil. Chem. Soc. 55 (2010) 307–311.
  • S. Wang, T. Terdkiatburana, M.O. Tade, Single and co-adsorption of heavy metals and humic acid on fly ash. Sep. Purif. Technol. 58 (2008) 353–358.
  • P. Shekinah, K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam, Adsorption of lead (II) from aqueous solution by activated carbon prepared from Eichhornia. J. Chem. Technol. Biotechnol. 77 (2002) 458–464.
  • M. Mouflih, A. Aklil, N. Jahroud, M. Gourai, S. Sebt, Removal of lead from aqueous solutions by natural phosphate. Hydrometallurgy 81 (2006) 219–225.
  • O.K. Karnitz Júnior, L.V.A. Gurgel, R.P. de Freitas, L.F. Gil, Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr. Polym. 77 (2009) 643–650.
  • M.R. Sangi, A. Shahmoradi, J. Zolgharnein, G.H. Azimi, M. Ghorbandoost, Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J. Hazard. Mater. 155 (2008) 513–522.
  • G. Mc Kay, Y.S. Ho, Pseudo-second order model for sorption processes. Process Biochem. 34 (1999) 451–465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.