71
Views
7
CrossRef citations to date
0
Altmetric
Articles

Enhancement of TiO2-UV100 nanoparticles photocatalytic activity by Mg impregnation in the removal of a model organic pollutant

&
Pages 689-696 | Received 16 May 2012, Accepted 28 Aug 2013, Published online: 10 Oct 2013

References

  • I. Oller, W. Gernjak, M.I. Maldonado, L.A. Perez-Estrada, J.A. Sanchez-Perez, S. Malato, Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 138 (2006) 507–517.
  • V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol., A 148 (2002) 233–245.
  • A. Nageswara Rao, B. Sivasankar, V. Sadasivam, Kinetic studies on the photocatalytic degradation of Direct Yellow 12 in the presence of ZnO catalyst. J. Mol. Catal. A: Chem. 306 (2009) 77–81.
  • L. Gomathi Devi, N. Kottam, B. Narasimha Murthy, S. Girish Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light. J. Mol. Catal. A: Chem. 328 (2010) 44–52.
  • S.X. Liu, Z.P. Qu, X.W. Han, C.L. Sun, A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal. Today 93–95 (2004) 877–884.
  • M.S. Lee, S.S. Hong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent. J. Mol. Catal. A: Chem. 242 (2005) 135–140.
  • M. El-Kemary, Y. Abdel-Moneam, M. Madkour, I. El-Mehasseb, Enhanced photocatalytic degradation of Safranin-O by heterogeneous nanoparticles for environmental applications. J. Lumin. 131 (2011) 570–576.
  • Sh Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active. J. Hazard. Mater. 170 (2009) 560–569.
  • Y. Bessekhouad, D. Robert, J.V. Weber, Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol., A 163 (2004) 569–580.
  • L. Wu, J.C. Yu, X. Fua, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J. Mol. Catal. A: Chem. 244 (2006) 25–32.
  • W. Ho, J.C. Yu, Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles. J. Mol. Catal. A: Chem. 247 (2006) 268–274.
  • S. Ji, M.H. Jun, J.S. Jang, H.C. Son, P.H. Borse, J.S. Lee, Photocatalytic hydrogen production from natural seawater. J. Photochem. Photobiol., A 189 (2007) 141–144.
  • Y. Nakaoka, H. Katsumata, S. Kaneco, T. Suzuki, K. Ohta, Photocatalytic degradation of diazinon in aqueous solution by platinized TiO2. Desalin. Water Treat. 13 (2010) 427–436.
  • L. Jianhua, Y. Rong, L. Songmei, Preparation and characterization of the TiO2–V2O5 photocatalyst with visible-light activity. Rare Met. 25 (2006) 636–642.
  • Y.Z. Li, D.S. Hwang, N.H. Lee, S.J. Kim, Synthesis and characterization of carbon-doped titania and artificial solar light sensitive photocatalyst. Chem. Phys. Lett. 404 (2005) 25–29.
  • X.H. Wang, J.G. Li, H.K. Amiyama, Y. Moriyoshi, T. Ishigaki, Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped iO2 nanopowders under UV and visible light irradiation. J. Phys. Chem. B 110 (2006) 6804–6809.
  • V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys. 96 (2006) 326–330.
  • D.T. Phuong, N. Quoc Tuan, B.T.H. Linh, L.G. Hy, T.M. Cuong, T.T.K. Hoa, L.M. Cam, V.A. Tuan, Photocatalytic degradation of p-xylene over doped titania thin film. Desalin. Water Treat. 34 (2011) 246–250.
  • Z. Ambrus, N. Balazs, T. Alapi, G. Wittmann, P. Sipos, A. Dombi, K. Mogyorosi, Synthesis, structure and photocatalytic properties of Fe (III)-doped TiO2 prepared from TiCl3. Appl. Catal., B 81 (2008) 27–37.
  • D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol., C 6 (2005) 186–205.
  • D. Chatterjee, A. Mahata, Photosensitized detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system. Catal. Commun. 2 (2001) 1–3.
  • Mst Sh Nahar, K. Hasegawa, Sh Kagaya, Sh Kuroda, Comparative assessment of the efficiency of Fe-doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions. Sci. Technol. Adv. Mater. 8 (2007) 286–291.
  • U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170 (2009) 520–529.
  • D.B. Hamal, K.J. Klabunde, Synthesis, characterization and visible light activity of new nanoparticle photocatalysts based on silver, carbon and sulfur-doped TiO2. J. Colloid Interface Sci. 311 (2007) 514–522.
  • H. Feng, L.E. Yu, M.H. Zhang, Ultrasonic synthesis and photocatalytic performance or metal ions doped TiO2 catalysts under solar light irradiation. Mater. Res. Bull. 48 (2013) 672–681.
  • N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem. 273 (2007) 177–185.
  • M.A. Behnajady, N. Modirshahla, M. Shokri, H. Elham, A. Zeininezhad, The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties. J. Environ. Sci. Health, Part A 43 (2008) 460–467.
  • J. Araña, J.M. Doña-Rodríguez, D. Portillo-Carrizo, C. Fernández-Rodríguez, J. Pérez-Peña, O. González Díaz, J.A. Navío, M. Macías, Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Appl. Catal., B 100 (2010) 346–354.
  • J. Araña, A. Peña Alonso, J.M. Doña Rodríguez, G. Colón, J.A. Navío, J. Pérez Peña, FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Appl. Catal., B 89 (2009) 204–213.
  • S.R. Patil, U.G. Akpan, B.H. Hameed, S.K. Samdarshi, A comparative study of the photocatalytic efficiency of Degussa P25, Qualigens, and Hombikat UV-100 in the degradation kinetic of Congo red dye. Desalin. Water Treat. 46 (2012) 188–195.
  • S. Anandan, P. Sathish Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol. Energy Mater. Sol. Cells 92 (2008) 929–937.
  • H. Delasa, B. Serrano, M. Salaices, Photocatalytic Reaction Engineering. Springer, New York, NY, 2005. pp. 39–45.
  • S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti). Ceram. Int. 37 (2011) 1359–1365.
  • M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 133 (2006) 226–232.
  • Y. Li, Sh Peng, F. Jiang, G. Lu, Sh Li, Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. J. Serb. Chem. Soc. 72 (2007) 393–402.
  • S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 26 (2010) 3–18.
  • M.A. Behnajady, N. Mansoriieh, N. Modirshahla, M. Shokri, Influence of operational parameters and kinetics analysis on the photocatalytic reduction of Cr(VI) by immobilized ZnO. Environ. Technol. 33 (2012) 265–271.
  • M.A. Behnajady, Sh Yavari, N. Modirshahla, Investigation on adsorption capacity of TiO2–P25 nanoparticles in the removal of a mono-azo dye from aqueous solution: A comprehensive isotherm analysis. Chem. Ind. Chem. Eng. Q (in press). doi: 10.2298/CICEQ120610105B.
  • P.K. Dutta, A.K. Ray, V.K. Sharma, F.J. Millero, Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci. 278 (2004) 270–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.