208
Views
14
CrossRef citations to date
0
Altmetric
Articles

Hybrid multi-walled carbon nanotubes-alginate-polysulfone beads for adsorption of bisphenol-A from aqueous solution

, , &
Pages 1167-1183 | Received 14 Nov 2013, Accepted 15 Feb 2014, Published online: 19 Mar 2014

References

  • J. Jackson, R. Sutton, Sources of endocrine-disrupting chemicals in urban wastewater, Oakland, CA, Sci. Total Environ. 405 (2008) 153–160.10.1016/j.scitotenv.2008.06.033
  • A.V. Krishnan, P. Stathis, S.F. Permuth, L. Tokes, D. Feldman, Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving, Endocrinology 132 (1993) 2279–2279.
  • T. Suzuki, Y. Nakagawa, I. Takano, K. Yaguchi, K. Yasuda, Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity, Environ. Sci. Technol. 38 (2004) 2389–2396.10.1021/es030576z
  • T. Yamamoto, A. Yasuhara, H. Shiraishi, O. Nakasugi, Bisphenol A in hazardous waste landfill leachates, Chemosphere 42 (2001) 415–418.10.1016/S0045-6535(00)00079-5
  • M. Grassi, G. Kaykioglu, V. Belgiorno, G. Lofrano, Removal of emerging contaminants from water and wastewater by adsorption process, in: G. Lofrano (Ed.) Emerging Compounds Removal from Wastewater, Springer, The Netherlands, 2012, pp. 15–37.10.1007/978-94-007-3916-1
  • C. Lu, H. Chiu, H. Bai, Comparisons of adsorbent cost for the removal of zinc (II) from aqueous solution by carbon nanotubes and activated carbon, J. Nanosci. Nanotechnol. 7 (2007) 4–5.
  • W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environ. Sci. Technol. 41 (2007) 8295–8300.10.1021/es071230h
  • A.V. Herrera-Herrera, M.Á. González-Curbelo, J. Hernández-Borges, M.Á. Rodríguez-Delgado, Carbon nanotubes applications in separation science: A review, Anal. Chim. Acta 734 (2012) 1–30.10.1016/j.aca.2012.04.035
  • R.Q. Long, R.T. Yang, Carbon nanotubes as superior sorbent for dioxin removal, J. Am. Chem. Soc. 123 (2001) 2058–2059.10.1021/ja003830l
  • C.-Y. Kuo, Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A, Desalination 249 (2009) 976–982.10.1016/j.desal.2009.06.058
  • Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (2003) 1057–1062.10.1016/S0008-6223(02)00440-2
  • D. Lin, B. Xing, Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups, Environ. Sci. Technol. 42 (2008) 7254–7259.10.1021/es801297u
  • M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin, Multi-walled carbon nanotubes induce T lymphocyte apoptosis, Toxicol. Lett. 160 (2006) 121–126.10.1016/j.toxlet.2005.06.020
  • J. Muller, F. Huaux, N. Moreau, P. Misson, J.-F. Heilier, M. Delos, M. Arras, A. Fonseca, J.B. Nagy, D. Lison, Respiratory toxicity of multi-wall carbon nanotubes, Toxicol. Appl. Pharmacol. 207 (2005) 221–231.10.1016/j.taap.2005.01.008
  • B. Fugetsu, S. Satoh, A. Iles, K. Tanaka, N. Nishi, F. Watari, Encapsulation of multi-walled carbon nanotubes (MWCNTs) in Ba2+-alginate to form coated micro-beads and their application to the pre-concentration/elimination of dibenzo-p-dioxin, dibenzofuran, and biphenyl from contaminated water, The Analyst 129 (2004) 565–566.10.1039/b405325g
  • A. Martinsen, G. Skjåk‐Bræk, O. Smidsrød, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol. Bioeng. 33 (1989) 79–89.10.1002/(ISSN)1097-0290
  • M. Kierstan, C. Bucke, The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels, Biotechnol. Bioeng. 19 (1977) 387–397.10.1002/(ISSN)1097-0290
  • J.Q. Albarelli, D.T. Santos, S. Murphy, M. Oelgemöller, Use of Ca–alginate as a novel support for TiO2 immobilization in methylene blue decolorisation, Water Sci. Technol. 60 (2009) 1081–1087.10.2166/wst.2009.459
  • K.Y. Lee, K.H. Bouhadir, D.J. Mooney, Controlled degradation of hydrogels using multi-functional cross-linking molecules, Biomaterials 25 (2004) 2461–2466.10.1016/j.biomaterials.2003.09.030
  • B. Fouad Sarrouh, D. Tresinari dos Santos, S. Silvério da Silva, Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads, Biotechnol. J. 2 (2007) 759–763.10.1002/(ISSN)1860-7314
  • C. Vogelsang, R.H. Wijffels, K. Østgaard, Rheological properties and mechanical stability of new gel-entrapment systems applied in bioreactors, Biotechnol. Bioeng. 70 (2000) 247–253.10.1002/(ISSN)1097-0290
  • M.J. El-Hibri, S.A. Weinberg, Polysulfones, in: F.M. Herman (Eds.), Encyclopedia of Polymer Science and Technology, vol. 4, Hoboken, Wiley; 2003, pp. 1–25.
  • M. Mao, Z. Liu, T. Wang, B. Yu, X. Wen, K. Yang, C. Zhao, Polysulfone‐activated carbon hybrid particles for the removal of BPA, Sep. Purif. Technol. 41 (2006) 515–529.10.1080/01496390500524875
  • C. Zhao, Q. Wei, K. Yang, X. Liu, M. Nomizu, N. Nishi, Preparation of porous polysulfone beads for selective removal of endocrine disruptors, Sep. Purif. Technol. 40 (2004) 297–302.10.1016/j.seppur.2004.03.007
  • W. Su-Hua, D. Bing-zhi, H. Yu, Adsorption of bisphenol A by polysulphone membrane, Desalination 253 (2010) 22–29.10.1016/j.desal.2009.11.041
  • E. Ben-Dov, E. Kramarsky-Winter, A. Kushmaro, An in situ method for cultivating microorganisms using a double encapsulation technique, FEMS Microbiol. Ecol. 68 (2009) 363–371.10.1111/fem.2009.68.issue-3
  • S. Loeb, S. Sourirajan, Sea Water Demineralization by Means of an Osmotic Membrane, ACS Publications, Washington, DC, 1962.
  • W.-T. Tsai, C.-W. Lai, T.-Y. Su, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. 134 (2006) 169–175.10.1016/j.jhazmat.2005.10.055
  • C.D. Vecitis, K.R. Zodrow, S. Kang, M. Elimelech, Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes, ACS Nano 4 (2010) 5471–5479.10.1021/nn101558x
  • T.K. Van Dyk, W.R. Majarian, K.B. Konstantinov, R.M. Young, P.S. Dhurjati, R.A. LaRossa, Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions, Appl. Environ. Microbiol. 60 (1994) 1414–1420.
  • F. Li, C. Lei, Q. Shen, L. Li, M. Wang, M. Guo, Y. Huang, Z. Nie, S. Yao, Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array, Nanoscale 5 (2012) 653–662.10.1039/c2nr32156d
  • T. Matsuura, Progress in membrane science and technology for seawater desalination—A review, Desalination 134 (2001) 47–54.10.1016/S0011-9164(01)00114-X
  • Y. Jodra, F. Mijangos, Phenol adsorption in immobilized activated carbon with alginate gels, Sep. Purif. Technol. 38 (2003) 1851–1867.10.1081/SS-120019412
  • X. Tong, J. Zheng, Y. Lu, Z. Zhang, H. Cheng, Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels, Mater. Lett. 61 (2007) 1704–1706.10.1016/j.matlet.2006.07.115
  • C.A. Staples, P.B. Dome, G.M. Klecka, S.T. Oblock, L.R. Harris, A review of the environmental fate, effects, and exposures of bisphenol A, Chemosphere 36 (1998) 2149–2173.10.1016/S0045-6535(97)10133-3
  • E. Guibal, P. McCarrick, J.M. Tobin, Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions, Sep. Purif. Technol. 38 (2003) 3049–3073.10.1081/SS-120022586
  • Y.-S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res. 34 (2000) 735–742.10.1016/S0043-1354(99)00232-8
  • G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res. 18 (1984) 1501–1507.10.1016/0043-1354(84)90124-6
  • W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon solution, J. Sanitary Eng. Div. 1 (1963) 1–2.
  • M. Özacar, I.A. Şengil, Application of kinetic models to the sorption of disperse dyes onto alunite, Colloids Surf. A 242 (2004) 105–113.
  • G.E. Boyd, A.W. Adamson, L.S. Myers, The exchange adsorption of ions from aqueous solution by organic zeolites II: Kinetics, J. Am. Chem. Soc. 302 (2006) 2836–2848.
  • V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Adsorption of basic fuchsin using waste materials—Bottom ash and deoiled soya—As adsorbents, J. Colloid Interface Sci. 319 (2008) 30–39.10.1016/j.jcis.2007.09.091
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.10.1021/ja02242a004
  • H. Freundlich, Über die adsorption in lösungen [Over the adsorption in solution], J. Phys. Chem. 57(38547) (1906) 1100–1107.
  • Z. Aksu, Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris, Process Biochem. 38 (2002) 89–99.10.1016/S0032-9592(02)00051-1
  • G. McKay, H. Blair, J. Gardner, Adsorption of dyes on chitin. I. Equilibrium studies, J. Appl. Polym. Sci. 27 (1982) 3043–3057.10.1002/app.1982.070270827

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.