89
Views
0
CrossRef citations to date
0
Altmetric
Articles

Supported iron-based catalysts under influence of static magnetic field for the removal of TBP and EDTA

, &
Pages 2700-2709 | Received 05 Sep 2013, Accepted 04 Mar 2014, Published online: 08 Apr 2014

References

  • A. Bacaloni, F. Cucci, C. Guarino, M. Nazzari, R. Samperi, A. Laganà, Occurrence of organophosphorus flame retardant and plasticizers in three volcanic lakes of central Italy, Environ. Sci. Technol. 42 (2008) 1898–1903.10.1021/es702549g
  • A. Marklund, B. Andersson, P. Haglund, Organophosphorus flame retardants and plasticizers in Swedish sewage treatment plants, Environ. Sci. Technol. 39 (2005) 7423–7429.10.1021/es051013l
  • E. Fries, W. Püttmann, Monitoring of the three organophosphate esters TBP, TCEP and TBEP in river water and ground water (Oder, Germany), J. Environ. Monit. 5 (2003) 346–352.10.1039/b210342g
  • B. Eklund, E. Bruno, G. Lithner, H. Borg, Use of ethylenediaminetetraacetic acid in pulp mills and effects on metal mobility and primary production, Environ. Toxicol. Chem. 21 (2002) 1040–1051.10.1002/etc.v21:5
  • B. Nowack, Environmental chemistry of aminopolycarboxylate chelating agents, Environ. Sci. Technol. 36 (2002) 4009–4016.10.1021/es025683s
  • M. Sillanpää, M. Orama, J. Rämö, A. Oikari, The importance of ligand speciation in environmental research: A case study, Sci. Total Environ. 267 (2001) 23–31.10.1016/S0048-9697(00)00723-3
  • K. Pirkanniemi, S. Metsarinne, M. Sillanpaa, Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton’s reagent, J. Hazard. Mater. 147 (2007) 556–561.10.1016/j.jhazmat.2007.01.050
  • F.G. Kari, W. Giger, Speciation and fate of ethylenediaminetetraacetate (EDTA) in municipal wastewater treatment, Water Res. 30 (1996) 122–134.10.1016/0043-1354(95)00125-5
  • M. Sillanpää, R. Kokkonen, M.-L. Sihvonen, Determination of EDTA and DTPA as their Fe(III) complexes in pulp and paper mill process and waste waters by liquid chromatography, Anal. Chim. Acta 303 (1995) 187–192.10.1016/0003-2670(94)00535-T
  • M. Sillanpää, Comlexing agents in waste water effluents of six finnish pulp and paper mills, Chemosphere 33 (1996) 293–302.10.1016/0045-6535(96)00172-5
  • M. Sillanpää, M.-L. Sihvonen, Analysis of EDTA and DTPA, Talanta 44 (1997) 1487–1497.10.1016/S0039-9140(97)00059-3
  • J. Rämö, M. Sillanpää, V. Vickackaite, M. Orama, L. Niinistö, Chelating ability and solubility of DTPA, EDTA and β-ADA in alkaline hydrogen peroxide environment, J. Pulp. Pap. Sci. 26 (2000) 125–131.
  • J. Rämö, M. Sillanpää, Degradation of EDTA by hydrogen peroxide in alkaline conditions, J. Cleaner Prod. 9 (2001) 191–195.
  • M. Sillanpaa, K. Pirkanniemi, Recent developments in chelate degradation, Environ. Technol. 22 (2001) 791–801.10.1080/095933322086180322
  • R.D. Ambashta, M. Sillanpää, Experimental design of application of nanoscale iron–nickel under sonication and static magnetic field for mixed waste remediation, J. Hazard. Mater. 189 (2011) 167–172.10.1016/j.jhazmat.2011.02.021
  • W.-X. Zhang, Nanoscale iron particles for environmental remediation: An overview, J. Nanopart. Res. 5 (2003) 323–332.10.1023/A:1025520116015
  • L. Li, M. Fan, R.C. Brown, J. Van Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review, Crit. Rev. Environ. Sci. Technol. 36 (2006) 405–431.10.1080/10643380600620387
  • O. Gylienė, T. Vengris, A. Stončius, O. Nivinskienė, Decontamination of solutions containing EDTA using metallic iron, J. Hazard. Mater. 159 (2008) 446–451.10.1016/j.jhazmat.2008.02.066
  • X.-Q. Li, D.W. Elliott, W.-X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects, Crit. Rev. Solid State Mater. Sci. 31 (2006) 111–122.10.1080/10408430601057611
  • Y.-T. Lin, C.-H. Weng, F.-Y. Chen, Effective removal of AB24 dye by nano/micro-size zero-valent iron, Sep. Purif. Technol. 64 (2008) 26–30.10.1016/j.seppur.2008.08.012
  • C. Lee, D.L. Sedlak, Enhanced formation of oxidants from bimetallic nickel−iron nanoparticles in the presence of oxygen, Environ. Sci. Technol. 42 (2008) 8528–8533.10.1021/es801947h
  • A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Effect of surface chemistry of Fe−Ni nanoparticles on mechanistic pathways of azo dye degradation, Environ. Sci. Technol. 41 (2007) 7437–7443.10.1021/es071107q
  • B. Schrick, J.L. Blough, A.D. Jones, T.E. Mallouk, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel−iron nanoparticles, Chem. Mater. 14 (2002) 5140–5147.10.1021/cm020737i
  • Y.-H. Tee, E. Grulke, D. Bhattacharyya, Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water, Ind. Eng. Chem. Res. 44 (2005) 7062–7070.10.1021/ie050086a
  • L. Gui, R.W. Gillham, M.S. Odziemkowski, Reduction of N-Nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics, Environ. Sci. Technol. 34 (2000) 3489–3494.10.1021/es9909778
  • J. Fan, Y. Gao, Nanoparticle-supported catalysts and catalytic reactions—A mini-review, J. Exp. Nanosci. 1 (2006) 457–475.10.1080/17458080601067708
  • J. Dong, Z. Xu, S.M. Kuznicki, Magnetic multi-functional nano composites for environmental applications, Adv. Funct. Mater. 19 (2009) 1268–1275.10.1002/adfm.v19:8
  • C. Gomez-Polo, A. Gil, S. Korili, J. Perez-Landazabal, V. Recarte, R. Trujillano, M. Vicente, Magnetic properties of nickel and cobalt catalysts supported on nanoporous oxides, J. Nanosci. Nanotechnol. 8 (2008) 2905–2911.
  • Z. Zhong, Y. Mastai, Y. Koltypin, Y. Zhao, A. Gedanken, Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate, Chem. Mater. 11 (1999) 2350–2359.10.1021/cm981005m
  • T.V. Reshetenko, L.B. Avdeeva, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, D.I. Kochubey, Y.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Coprecipitated iron-containing catalysts (Fe–Al2O3, Fe–Co–Al2O3, Fe–Ni-Al2O3) for methane decomposition at moderate temperatures, Appl. Catal., A 270 (2004) 87–99.10.1016/j.apcata.2004.04.026
  • T.V. Reshetenko, L.B. Avdeeva, A.A. Khassin, G.N. Kustova, V.A. Ushakov, E.M. Moroz, A.N. Shmakov, V.V. Kriventsov, D.I. Kochubey, Y.T. Pavlyukhin, A.L. Chuvilin, Z.R. Ismagilov, Coprecipitated iron-containing catalysts (Fe–Al2O3, Fe–Co–Al2O3, Fe–Ni–Al2O3) for methane decomposition at moderate temperaturesI. Genesis of calcined and reduced catalysts, Appl. Catal., A 268 (2004) 127–138.10.1016/j.apcata.2004.03.045
  • W. Teunissen, A.A. Bol, J.W. Geus, Magnetic catalyst bodies, Catal. Today 48 (1999) 329–336.10.1016/S0920-5861(98)00389-7
  • E. Boellaard, A.M. van der Kraan, J.W. Geus, Preparation, reduction, and CO chemisorption properties of a cyanide-derived Fe/Al2O3 catalyst, Appl. Catal., A 147 (1996) 207–227.10.1016/S0926-860X(96)00193-7
  • M.J. Watts, K.G. Linden, Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water, Water Res. 42 (2008) 4949–4954.10.1016/j.watres.2008.09.020
  • D.F. Laine, A. Blumenfeld, I.F. Cheng, Mechanistic study of the ZEA organic pollutant degradation system: Evidence for H2O2, HO•, and the Homogeneous Activation of O2 by FeII EDTA, Ind. Eng. Chem. Res. 47 (2008) 6502–6508.10.1021/ie701676q
  • C.R. Keenan, D.L. Sedlak, Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen, Environ. Sci. Technol. 42 (2008) 6936–6941.10.1021/es801438f
  • C.E. Noradoun, I.F. Cheng, EDTA degradation induced by oxygen activation in a zerovalent iron/air/water system, Environ. Sci. Technol. 39 (2005) 7158–7163.10.1021/es050137v
  • T. Zhou, X. Lu, J. Wang, F.-S. Wong, Y. Li, Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy, J. Hazard. Mater. 165 (2009) 193–199.10.1016/j.jhazmat.2008.09.100
  • D.M. Cwiertny, S.J. Bransfield, A.L. Roberts, Influence of the oxidizing species on the reactivity of iron-based bimetallic reductants, Environ. Sci. Technol. 41 (2007) 3734–3740.10.1021/es062993s
  • A.D. Bokare, R.C. Chikate, C.V. Rode, K.M. Paknikar, Iron–nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution, Appl. Catal., B 79 (2008) 270–278.10.1016/j.apcatb.2007.10.033
  • C. Noubactep, On the operating mode of bimetallic systems for environmental remediation, J. Hazard. Mater. 164 (2009) 394–395.10.1016/j.jhazmat.2008.08.004
  • I. Sanchez, F. Stüber, J. Font, A. Fortuny, A. Fabregat, C. Bengoa, Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure, Chemosphere 68 (2007) 338–344.10.1016/j.chemosphere.2006.12.059
  • X. Du, Y. Wang, X. Su, J. Li, Influences of pH value on the microstructure and phase transformation of aluminum hydroxide, Powder Technol. 192 (2009) 40–46.10.1016/j.powtec.2008.11.008
  • J.M. Saniger, N.A. Sánchez, J.O. Flores, Partial fluorination of γ-alumina by gaseous fluorine. J. Fluorine Chem. 88 (1998) 117–125.10.1016/S0022-1139(98)00106-7
  • K.C. Lanigan, K. Pidsosny, Reflectance FTIR spectroscopic analysis of metal complexation to EDTA and EDDS, Vib. Spectrosc. 45 (2007) 2–9.10.1016/j.vibspec.2007.03.003
  • B. Liu, R. Hu, J. Deng, Studies on a potentiometric urea biosensor based on an ammonia electrode and urease, immobilized on a γ-aluminum oxide matrix, Anal. Chim. Acta 341 (1997) 161–169.10.1016/S0003-2670(96)00553-3
  • E.G. Petrov, I.S. Tolokh, V. May, Blocking of bridge-mediated electron transfer by an external magnetic field, Chem. Phys. Lett. 294 (1998) 19–25.10.1016/S0009-2614(98)00843-4
  • M.J. Watts, K.G. Linden, Advanced oxidation kinetics of aqueous trialkyl phosphate flame retardants and plasticizers, Environ. Sci. Technol. 43 (2009) 2937–2942.10.1021/es8031659
  • H.F. Aly, Wet-oxidation of spent organic waste tributyl phosphate/diluents, J. Radioanal. Nucl. Chem. 249 (2001) 643–647.10.1023/A:1013218920183
  • N. Gokulakrishnan, A. Pandurangan, P.K. Sinha, Catalytic wet peroxide oxidation technique for the removal of decontaminating agents ethylenediaminetetraacetic acid and oxalic acid from aqueous solution using efficient Fenton type Fe-MCM-41 mesoporous materials, Ind. Eng. Chem. Res. 48 (2008) 1556–1561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.