87
Views
10
CrossRef citations to date
0
Altmetric
Articles

Potential application of inorganic sulfur reductants for Cr(VI) removal at sub-ppb level

, , &
Pages 2067-2074 | Received 06 Aug 2013, Accepted 26 Feb 2014, Published online: 14 Jul 2014

References

  • M. Mitrakas, N. Tzoupanos, N. Kazakis, E. Kaprara, K. Simeonidis, P. Samaras, A. Zouboulis, Hexavalent chromium [Cr(VI)] in drinking water of Greece—Estimation of the origin, in: Proceedings of the 3rd International Conference on Industrial and Hazardous Waste, Crete, 2012.
  • G. Cooper, Oxidation and toxicity of chromium in ultramafic soils in Zimbabwe, Appl. Geochem. 17 (2002) 981–986.10.1016/S0883-2927(02)00014-8
  • D. Fantoni, G. Brozzo, M. Canepa, F. Cipolli, L. Marini, G. Ottonello, M. Zuccolini, Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks, Environ. Geol. 42 (2002) 871–882.10.1007/s00254-002-0605-0
  • L. Eary, D. Rai, Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide, Environ. Sci. Technol. 21 (1987) 1187–1193.10.1021/es00165a005
  • F. Richard, A. Bourg, Aqueous geochemistry of chromium: A review, Water Res. 25 (1991) 807–816.10.1016/0043-1354(91)90160-R
  • D. Barceloux, Chromium, Clin. Toxicol. 37 (1999) 173–194.10.1081/CLT-100102418
  • N. Melitas, O. Chuffe-Moscoso, J. Farrell, Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects, Environ. Sci. Technol. 35 (2001) 3948–3953.10.1021/es001923x
  • M. Mitrakas, A. Pantazatou, R. Tzimou-Tsitouridou, C. Sikalidis, Influence of pH and temperature on Cr(VI) removal from a natural water using Fe(II): A pilot and full scale case study, Desalin. Water Treat. 33 (2011) 77–85.10.5004/dwt.2011.2620
  • D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard. Mater. 137 (2006) 762–811.10.1016/j.jhazmat.2006.06.060
  • A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere 56 (2004) 91–106.10.1016/j.chemosphere.2004.03.006
  • I. Korus, K. Loska, Removal of Cr(III) and Cr(VI) ions from aqueous solutions by means of polyelectrolyte-enhanced ultrafiltration, Desalination 247 (2009) 390–395.10.1016/j.desal.2008.12.036
  • S.K. Nataraj, K.M. Hosamani, T.M. Aminabhavi, Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal, Desalination 217 (2007) 181–190.10.1016/j.desal.2007.02.012
  • C. Cervantes, J. Campos-García, S. Devars, F. Gutiérrez-Corona, H. Loza-Tavera, J. Torres-Guzmán, R. Moreno-Sánchez, Interactions of chromium with microorganisms and plants, FEMS Microbiol. Rev. 25 (2001) 335–347.10.1111/fmr.2001.25.issue-3
  • K.A. Matis, P. Mavros, Recovery of metals by ion flotation from dilute aqueous solutions, Sep. Purif. Rev. 20 (1991) 1–48.10.1080/03602549108021407
  • T. Vincent, E. Guibal, Cr(VI) extraction using aliquat 336 in a hollow fiber module made of chitosan, Ind. Eng. Chem. Res. 40 (2001) 1406–1411.10.1021/ie000833y
  • M. Rivero-Huguet, W.D. Marshall, Reduction of hexavalent chromium mediated by micron- and nano-scale zero-valent metallic particles, J. Environ. Monit. 11 (2009) 1072–1079.10.1039/b819279k
  • G. Lee, J.G. Hering, Removal of chromium(VI) from drinking water by redox-assisted coagulation with iron(II), J. Water Supply Res. T. 52 (2003) 319–332.
  • D. Schroeder, G. Lee, Potential transformations of chromium in natural waters, Water Air Soil Pollut. 4 (1975) 355–365.10.1007/BF00280721
  • J. Patterson, E. Gasca, Y. Wang, Optimization for reduction/precipitation treatment of hexavalent chromium, Water Sci. Technol. 29 (1994) 275–284.
  • C. Kim, Q. Zhou, B. Deng, E. Thornton, H. Xu, Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics, Environ. Sci. Technol. 35 (2001) 2219–2225.10.1021/es0017007
  • A.I. Zouboulis, K.A. Kydros, K.A. Matis, Removal of hexavalent chromium anions from solutions by pyrite fines, Water Res. 29 (1995) 1755–1760.10.1016/0043-1354(94)00319-3
  • R.R. Patterson, S. Fendorf, Reduction of hexavalent chromium by amorphous iron sulfide, Environ. Sci. Technol. 31 (1997) 2039–2044.10.1021/es960836v
  • L.Y. Chang, Alternative chromium reduction and heavy metal precipitation methods for industrial wastewater, Environ. Prog. 22 (2003) 174–182.10.1002/(ISSN)1547-5921
  • R.D. Ludwig, C. Su, T.R. Lee, R.T. Wilkin, S.D. Acree, R.R. Ross, In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: A field investigation, Environ. Sci. Technol. 41 (2007) 5299–5305.10.1021/es070025z
  • Z. Houda, Q. Wang, Y. Wu, X. Xu, Reduction remediation of hexavalent chromium by pyrite in the aqueous phase, J. Appl. Sci. 7 (2007) 1522–1527.
  • H. Li, H. Cao, L. Yuping, H. Dai, Y. Zhang, Reduction kinetics of chromium(VI) by S(-II) in alkalescent aqueous media, Environ. Eng. Sci. 26 (2009) 263–268.10.1089/ees.2007.0269
  • M. McGuire, N. Blute, C. Seidel, G. Qin, L. Fong, Pilot-scale studies of hexavalent chromium removal from drinking water, J. AWWA 98 (2006) 134–143.
  • A. Eaton, L. Clesceri, E. Rice, A. Greenberg, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association (APHA), Washington, DC, 2005.
  • C. Su, R.D. Ludwig, Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite, Environ. Sci. Technol. 39 (2005) 6208–6216.10.1021/es050185f
  • Dennis B. Hobson, P. Richardson, P. Robinson, E. Hewitt, I. Smith, Kinetics of the oxygen-sulfite reaction at waterflood concentrations: Effect of catalysts and seawater medium, Ind. Eng. Chem. Res. 26 (1987) 1818–1822.10.1021/ie00069a016
  • E. Chibowski, L. Hotysz, A. Szcześ, Time dependent changes in zeta potential of freshly precipitated calcium carbonate, Colloids Surf., A 222 (2003) 41–54.10.1016/S0927-7757(03)00232-2
  • L.E. Eary, D. Rai, Chromate removal from aqueous wastes by reduction with ferrous iron, Environ. Sci. Technol. 22 (1998) 972–977.
  • M.P. Páez, M.C. Jiménez, M. Fernández, Application of the sodium dithionite oxidation to measure oxygen transfer parameters, Chem. Eng. Sci. 52 (1997) 1387–1391.
  • J.E. Amonette, J.E. Szecsody, H.T. Schaef, Y.A. Gorby, J.S. Fruchter, J.S. Templeton, Abiotic reduction of aquifer materials by dithionite: A promising in situ remediation technology, in: Proceedings of the 33rd Hanford Symposium on Health and the Environments In Situ Remediation: Scientific Basis for Current and Future Technologies, Battelle Press, Columbus, OH, 1994, pp. 851–882.10.2172/43791
  • J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew, In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination, Environ. Sci. Technol. 38 (2004) 4656–4663.10.1021/es034756k
  • J.W. Morse, F.J. Millero, J.C. Cornwell, D. Rickard, The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters, Earth Sci. Rev. 24 (1987) 1–42.10.1016/0012-8252(87)90046-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.