113
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of operational parameters on the photodegradation of 2,4-dinitrophenol in TiO2 dispersion

, , , &
Pages 744-751 | Received 25 Oct 2013, Accepted 17 Jun 2014, Published online: 11 Jul 2014

References

  • M.A.J. Harrison, S. Barra, D. Borghesi, D. Vione, C. Arsene, R. Iulian Olariu, Nitrated phenols in the atmosphere: A review, Atmos. Environ. 39 (2005) 231–248.10.1016/j.atmosenv.2004.09.044
  • C. Ye, Q. Zhou, X. Wang, J. Xiao, Determination of phenols in environmental water samples by ionic liquid-based headspace liquid-phase microextraction coupled with high-performance liquid chromatography, J. Sep. Sci. 30 (2007) 42–47.10.1002/(ISSN)1615-9314
  • J. Jin, C. Wang, Y. Tao, Y. Tan, D. Yang, Y. Gu, H. Deng, Y. Bai, H. Lu, Y. Wan, Z. Lu, Y. Li, Determination of 3-nitrotyrosine in human urine samples by surface plasmon resonance immunoassay, Sens. Actuators, B 153 (2011) 164–169.10.1016/j.snb.2010.10.022
  • P. Bastos, P. Haglund, The use of comprehensive two-dimensional gas chromatography and structure–activity modeling for screening and preliminary risk assessment of organic contaminants in soil, sediment, and surface water, J. Soils Sediments 12 (2012) 1079–1088.10.1007/s11368-012-0533-x
  • C. Hu, B. Chen, M. He, B. Hu, Amino modified multi-walled carbon nanotubes/polydimethylsiloxane coated stir bar sorptive extraction coupled to high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental samples, J. Chromatogr. A 1300 (2013) 165–172.10.1016/j.chroma.2013.05.004
  • M. Khairy, Assessment of priority phenolic compounds in sediments from an extremely polluted coastal wetland (Lake Maryut, Egypt), Environ. Monit. Assess. 185 (2013) 441–455.10.1007/s10661-012-2566-4
  • C. Liu, D. Yong, D. Yu, S. Dong, Cell-based biosensor for measurement of phenol and nitrophenols toxicity, Talanta 84 (2011) 766–770.10.1016/j.talanta.2011.02.006
  • D.T. Sponza, Ö.S. Kuscu, Relationships between acute toxicities of para nitrophenol (p-NP) and nitrobenzene (NB) to Daphnia magna and Photobacterium phosphoreum: Physicochemical properties and metabolites under anaerobic/aerobic sequentials, J. Hazard. Mater. 185 (2011) 1187–1197.10.1016/j.jhazmat.2010.10.030
  • G. Xue, M. Gao, Z. Gu, Z. Luo, Z. Hu, The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites, Chem. Eng. J. 218 (2013) 223–231.10.1016/j.cej.2012.12.045
  • M.C. Tomei, M.C. Annesini, S. Bussoletti, 4-nitrophenol biodegradation in a sequencing batch reactor: Kinetic study and effect of filling time, Water Res. 38 (2004) 375–384.10.1016/j.watres.2003.09.023
  • K.H. Wang, Y.H. Hsieh, M.Y. Chou, C.Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal., B 21 (1999) 1–8.10.1016/S0926-3373(98)00116-7
  • M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method, Environ. Sci. Technol. 34 (2000) 3474–3479.10.1021/es990901b
  • A. Goi, M. Trapido, Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols: A comparative study, Chemosphere 46 (2002) 913–922.10.1016/S0045-6535(01)00203-X
  • A. Di Paola, V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov, Heterogeneous photocatalytic degradation of nitrophenols, J. Photochem. Photobiol., A 155 (2003) 207–214.10.1016/S1010-6030(02)00390-8
  • L. Tao, F. Li, C. Feng, K. Sun, Reductive transformation of 2-nitrophenol by Fe(II) species in γ-aluminum oxide suspension, Appl. Clay Sci. 46 (2009) 95–101.10.1016/j.clay.2009.07.005
  • M.V. Bagal, B.J. Lele, P.R. Gogate, Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7L, Ultrason. Sonochem. 20 (2013) 1217–1225.10.1016/j.ultsonch.2013.01.015
  • Z. Zhu, L. Tao, F. Li, Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions, Chemosphere 93 (2013) 29–34.10.1016/j.chemosphere.2013.04.053
  • M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.10.1021/cr00033a004
  • A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C 1 (2000) 1–21.10.1016/S1389-5567(00)00002-2
  • U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, J. Photochem. Photobiol., C 9 (2008) 1–12.10.1016/j.jphotochemrev.2007.12.003
  • J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: A literature review, Atmos. Environ. 43 (2009) 2229–2246.10.1016/j.atmosenv.2009.01.034
  • A. Markowska-Szczupak, K. Ulfig, A.W. Morawski, The application of titanium dioxide for deactivation of bioparticulates: An overview, Catal. Today 169 (2011) 249–257.10.1016/j.cattod.2010.11.055
  • X. Zhang, F. Wu, N. Deng, Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation, J. Hazard. Mater. 185 (2011) 117–123.10.1016/j.jhazmat.2010.09.005
  • L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Res. 41 (2007) 2612–2626.10.1016/j.watres.2007.02.026
  • D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, Recombination pathways in the Degussa P25 formulation of TiO2: Surface versus lattice mechanisms, J. Phys. Chem. B 109 (2004) 977–980.
  • M.H. Habibi, A. Hassanzadeh, S. Mahdavi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, J. Photochem. Photobiol., A 172 (2005) 89–96.10.1016/j.jphotochem.2004.11.009
  • D. Chen, A.K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res. 32 (1998) 3223–3234.10.1016/S0043-1354(98)00118-3
  • A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep. 63 (2008) 515–582.10.1016/j.surfrep.2008.10.001
  • X. Zhao, X. Quan, H. Zhao, S. Chen, Y. Zhao, J. Chen, Different effects of humic substances on photodegradation of p, p'-DDT on soil surfaces in the presence of TiO2 under UV and visible light, J. Photochem. Photobiol., A 167 (2004) 177–183.10.1016/j.jphotochem.2004.05.003
  • E. Selli, D. Baglio, L. Montanarella, G. Bidoglio, Role of humic acids in the TiO2-photocatalyzed degradation of tetrachloroethene in water, Water Res. 33 (1999) 1827–1836.10.1016/S0043-1354(98)00368-6
  • S.T. Martin, A.T. Lee, M.R. Hoffmann, Chemical mechanism of inorganic oxidants in the TiO2/UV process: Increased rates of degradation of chlorinated hydrocarbons, Environ. Sci. Technol. 29 (1995) 2567–2573.10.1021/es00010a017
  • W. Zhang, X. Xiao, T. An, Z. Song, J. Fu, G. Sheng, M. Cui, Kinetics, degradation pathway and reaction mechanism of advanced oxidation of 4-nitrophenol in water by a UV/H2O2 process, J. Chem. Technol. Biotechnol. 78 (2003) 788–794.10.1002/(ISSN)1097-4660

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.