168
Views
16
CrossRef citations to date
0
Altmetric
Articles

Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: column studies

, &
Pages 1162-1170 | Received 27 Sep 2013, Accepted 20 Jun 2014, Published online: 25 Jul 2014

References

  • R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard. Mater. 211–212 (2012) 112–125.10.1016/j.jhazmat.2011.11.073
  • D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Adv. Water Resour. 51 (2013) 104–122.10.1016/j.advwatres.2012.02.005
  • D. Sparis, C. Mystrioti, A. Xenidis, N. Papassiopi, Reduction of nitrate by copper-coated ZVI nanoparticles, Desal. Water Treat. 51 (2013) 2926–2933.10.1080/19443994.2012.748303
  • S. Chen, Y. Huang, J. Lin, M. Lin, Dechlorination of tetrachloroethylene in water using stabilized nanoscale iron and palladized iron particles, Desal. Water Treat. 52 (2014) 702–711.10.1080/19443994.2013.827305
  • T. Phenrat, N. Saleh, K. Shirk, R. Tilton, G. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol. 41 (2007) 284–290.10.1021/es061349a
  • F. He, M. Zhang, T. Qian, D. Zhao, Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling, J. Colloid Interf. Sci. 334 (2009) 96–102.10.1016/j.jcis.2009.02.058
  • T. Raychoudhury, G. Naja, S. Ghoshal, Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media, J. Contam. Hydrol. 118 (2010) 143–151.10.1016/j.jconhyd.2010.09.005
  • L. Hoch, E. Mack, B. Hydutsky, J. Hershman, J. Skluzacek, T. Mallouk, Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium, Environ. Sci. Technol. 42 (2008) 2600–2605.10.1021/es702589u
  • G. Hoag, J. Collins, Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem. 19 (2009) 8671–8677.10.1039/b909148c
  • E. Njagi, H. Huang, L. Stafford, H. Genuino, H. Galindo, J. Collins, G. Hoag, S. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts, Langmuir 27 (2010) 264–271.
  • T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyacı, A. Eroglu, T. Scott, K. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes, Chem. Eng. J. 172 (2011) 258–266.10.1016/j.cej.2011.05.103
  • M. Chrysochoou, M. McGuire, G. Dahal, Transport characteristics of green-tea nano-scale zero valent iron as a function of soil mineralogy, Chem. Eng. Trans. 28 (2012) 121–126.
  • C. Mystrioti, N. Papassiopi, A. Xenidis, D. Dermatas, M. Chrysochoou, Column study for the evaluation of transport properties of polyphenol-coated nano iron, J. Hazard. Mater. ( in press), doi: 10.1016/j.jhazmat.2014.05.050.
  • M. Chrysochoou, C. Johnston, G. Dahal, A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron, J. Hazard. Mater. 201–202 (2012) 33–42.10.1016/j.jhazmat.2011.11.003
  • D. Moraetis, N.P. Nikolaidis, G.P. Karatzas, Z. Dokou, N. Kalogerakis, L.H.E. Winkel, Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece, Appl. Geochem. 27 (2012) 1170–1178.10.1016/j.apgeochem.2012.03.005
  • M.A. Lilli, D. Moraetis, N.P. Nikolaidis, G.P. Karatzas, N. Kalogerakis, Characterization and mobility of hexavalent chromium in soils and sediments, in: Proceedings of the13th International Conference on Environmental Science and Technology, Athens, Greece, September 5–7, 2013.
  • R.W. Lawrence, Y. Wang, Determination of neutralization potential in the prediction of acid rock drainage, in: Proceedings of the Fourth International Conference on Acid Rock Drainage, Vancouver, BC, 1997, pp. 449–464.
  • D.W. Nelson, L.E. Sommers, Total carbon, organic carbon and organic matter, in: J.M. Bartells (Ed.), Methods of Soil Analysis. Part 3: Chemical Methods, vol. 5, third ed., ASA and SSSA, Madison, WI, 1996, pp. 961–1010.
  • A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nanolevel, Science 311 (2006) 622–627.10.1126/science.1114397
  • N. Papassiopi, K. Vaxevanidou, C. Christou, E. Karagianni, G.S.E. Antipas, Synthesis, characterization and stability of Cr(ΙΙΙ) and Fe(ΙΙΙ) hydroxides, J. Hazard. Mater. 264 (2014) 490–497.10.1016/j.jhazmat.2013.09.058
  • M. Gheju, Hexavalent chromium reduction with zero-valent Iron (ZVI) in aquatic systems, Water Air Soil Poll. 222 (2011) 103–148.10.1007/s11270-011-0812-y
  • D.I. Kaplan, T.J Gilmore, Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions, Water Air Soil Poll. 155 (2004) 21–33.
  • A.H. El-Shazly, A.A. Mubarak, A.H. Konsowa, Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres, Desalination 185 (2005) 307–316.10.1016/j.desal.2005.03.083
  • Z Li, H.K. Jones, P. Zhang, R.S. Bowman, Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets, Chemosphere 68 (2007) 1861–1866.
  • F. Battaglia-Brunet, S. Foucher, D. Morin, I. Ignatiadis, Chromate (CrO42-) reduction in groundwaters by using reductive bacteria in fixed-bed bioreactors, Water Air Soil Poll: Focus 4 (2004) 127–135.10.1023/B:WAFO.0000044792.16819.69
  • E. Sahinkaya, A. Kilic, M. Altun, K. Komnitsas, P.N.L. Lens, Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor, J. Hazard. Mater. 219–220 (2012) 253–259.10.1016/j.jhazmat.2012.04.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.