90
Views
12
CrossRef citations to date
0
Altmetric
Articles

Equilibrium, kinetic and thermodynamic studies for the removal of Zn(II) and Ni(II) ions using magnetically recoverable graphene/Fe3O4 composite

, , , , &
Pages 2485-2501 | Received 31 Dec 2013, Accepted 26 Aug 2014, Published online: 20 Oct 2014

References

  • T.Y. Wu, G. Ningqun, Y.T. Chee, X.W.H. Jacqueline, Advances in Ultrasound Technology for Environmental Remediation, Springer, Netherlands, 2013, doi: 10.1007/978-94-007-5533-8.10.1007/978-94-007-5533-8
  • S. Sthiannopkao, S. Sreesai, Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater, J. Environ. Manage. 90 (2009) 3283–3289.10.1016/j.jenvman.2009.05.006
  • T.K. Sen, S.P. Mahajan, K.C. Khilar, Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media, Colloids Surf., A 211 (2002) 91–102.10.1016/S0927-7757(02)00235-2
  • D. Mohan, K.P. Singh, Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste, Water Res. 36 (2002) 2304–2318.10.1016/S0043-1354(01)00447-X
  • K. Huang, Y. Xiu, H. Zhu, Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp, Desalin. Water Treat., doi: 10.1080/19443994.2013.838522.
  • D. Aderhold, C.J. Williams, R.G.J. Edyvean, The removal of heavy-metal ions by seaweeds and their derivatives, Bioresour. Technol. 58 (1996) 1–6.10.1016/S0960-8524(96)00072-7
  • N. Balasubramanian, T. Kojima, C.A. Basha, C. Srinivasakannan, Removal of arsenic from aqueous solution using electrocoagulation, J. Hazard. Mater. 167 (2009) 966–969.10.1016/j.jhazmat.2009.01.081
  • M.R. Lasheen, Iman Y. El-Sherif, Y. Dina Sabry, S.T. El-Wakeel, M.F. El-Shahat, Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics, Desalin. Water. Treat., doi: 10.1080/19443994.2013.873880.
  • N. Mohan, N. Balasubramanian, C.A. Basha, Electrochemical oxidation of textile wastewater and its reuse, J. Hazard. Mater. 147 (2007) 644–651.10.1016/j.jhazmat.2007.01.063
  • H.D. Doan, A. Lohi, V.B.H. Dang, T. Dang-Vu, Removal of Zn2+ and Ni2+ by adsorption in a fixed bed of wheat straw, Process Saf. Environ. 86 (2008) 259–267.10.1016/j.psep.2008.04.004
  • J.S. Kwon, S.T. Yun, J.H. Lee, S.O. Kim, H.Y. Jo, Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption, J. Hazard. Mater. 174 (2010) 307–313.10.1016/j.jhazmat.2009.09.052
  • P.S. Kumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell, Desalination 266 (2011) 63–71.
  • Y. Feng, J. Gong, G. Zeng, Q. Niu, H. Zhang, C. Niu, J. Deng, M. Yan, Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J. 162 (2010) 487–494.10.1016/j.cej.2010.05.049
  • F.A. Al-Khaldi, B. Abu-Sharkh, A.M. Abulkibash, M.A. Atieha, Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study, Desalin. Water Treat., doi: 10.1080/19443994.2013.847805.
  • A. Murugesan, T. Vidhyadevi, S.S. Kalaivani, M.P. Premkumar, L. Ravikumar, S. Sivanesan, Kinetic and thermodynamic studies on the removal of Zn2+ and Ni2+ from their aqueous solution using poly(phenylthiourea)imine, Chem. Eng. J. 197 (2012) 368–378.10.1016/j.cej.2012.05.027
  • K. Yogesh Kumar, H.B. Muralidhara, Y. Arthoba Nayaka, J. Balasubramanyam, Low-cost synthesis of mesoporous Zn(II) Sn(II) mixed oxide nanoparticles for the adsorption of dye and heavy metal ion from aqueous solution, Desalin. Water Treat. 52 (2014) 4029–4039.
  • P.S. Kumar, S. Ramalingam, S.D. Kirupha, A. Murugesan, T. Vidhyadevi, S. Sivanesan, Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chem. Eng. J. 167 (2011) 122–131.10.1016/j.cej.2010.12.010
  • T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57 (2012) 1061–1105.10.1016/j.pmatsci.2012.03.002
  • C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano. 5 (2011) 2332–2339.10.1021/nn200025p
  • L. Fan, C. Luo, M. Sun, H. Qiu, Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal, J. Mater. Chem. 22 (2012) 24577–24583.10.1039/c2jm35378d
  • J. Zhu, R. Sadu, S. Wei, D.H. Chen, N. Haldolaarachchige, Z. Luo, J.A. Gomes, D.P. Young, Z. Guo, Magnetic graphene nanoplatelet composites toward arsenic removal, ECS J. Solid State Sci. Technol. 1 (2012) M1–M5.10.1149/2.010201jss
  • F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal, ACS Appl. Mater. Interfaces 4 (2012) 922–927.10.1021/am201590z
  • J. Zhu, S. Wei, H. Gu, S.B. Rapole, Q. Wang, Z. Luo, N. Haldolaarachchige, D.P. Young, Z. Guo, One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol. 46 (2012) 977–985.10.1021/es2014133
  • L. Ai, C. Zhang, Z. Chen, Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite, J. Hazard. Mater. 192 (2011) 1515–1524.10.1016/j.jhazmat.2011.06.068
  • J. Guo, R. Wang, W.W. Tjiu, J. Pan, T. Liu, Synthesis of Fe nanoparticles@graphene composites for environmental applications, J. Hazard. Mater. 225–226 (2012) 63–73.10.1016/j.jhazmat.2012.04.065
  • L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton. Trans. 41 (2012) 4544–4551.10.1039/c2dt11827k
  • Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol. 68 (2009) 312–319.10.1016/j.seppur.2009.05.020
  • T. Shahriari, G. Nabi Bidhendi, N. Mehrdadi, A. Torabian, Effective parameters for the adsorption of chromium(III) onto iron oxide magnetic nanoparticle, Int. J. Environ. Sci. Technol. 11 (2014) 349–356.
  • K.Z. Elwakeel, Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions, Int. J. Environ. Sci. Technol. 11(4) (2014) 1051–1062.10.1007/s13762-013-0307-z
  • G. Sheng, J. Li, D. Shao, J. Hu, C. Chen, Y. Chen, X. Wang, Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids, J. Hazard. Mater. 178 (2010) 333–340.10.1016/j.jhazmat.2010.01.084
  • G. Sheng, Y. Li, X. Yang, X. Ren, S. Yang, J. Hu, X. Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Adv. 2 (2012) 12400–12407.10.1039/c2ra21623j
  • T.N. Narayanan, Z. Liu, P.R. Lakshmy, W. Gao, Y. Nagaoka, D. Sakthi Kumar, J. Lou, R. Vajtai, P.M. Ajayan, Synthesis of reduced graphene oxide–Fe3O4 multifunctional freestanding membranes and their temperature dependent electronic transport properties, Carbon 50 (2012) 1338–1345.10.1016/j.carbon.2011.11.005
  • K. Zhou, Y. Zhu, X. Yang, C. Li, Preparation and application of mediator-free H2O2 biosensors of graphene–Fe3O4 composites, Electroanalysis 23 (2011) 862–869.10.1002/elan.201000629
  • X. Yang, X. Zhang, Y. Ma, Y. Huang, Y. Wang, Y. Chen, Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, J. Mater. Chem. 19 (2009) 2710–2714.10.1039/b821416f
  • W. Fan, W. Gao, C. Zhang, W.W. Tjiu, J. Pan, T. Liu, Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes, J. Mater. Chem. 22 (2012) 25108–25115.10.1039/c2jm35609k
  • G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao, J. Wang, A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution, J. Mater. Chem. 22 (2012) 1033–1039.10.1039/c1jm13433g
  • V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano. 4 (2010) 3979–3986.10.1021/nn1008897
  • H.L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z.E. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale 4 (2012) 3515–3522.10.1039/c2nr30490b
  • D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano. 4 (2010) 4806–4814.10.1021/nn1006368
  • K. Zhou, Y. Zhu, X. Yang, C. Li, One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction, New J. Chem. 34 (2010) 2950–2955.10.1039/c0nj00283f
  • G. Sheng, H. Dong, R. Shen, Y. Li, Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique, Chem. Eng. J. 217 (2013) 486–494.10.1016/j.cej.2012.10.076
  • G. Sheng, H. Dong, Y. Li, Characterization of diatomite and its application for the retention of radiocobalt: Role of environmental parameters, J. Environ. Radioactiv. 113 (2012) 108–115.10.1016/j.jenvrad.2012.05.011
  • G. Sheng, R. Shen, H. Dong, Y. Li, Colloidal diatomite, radionickel, and humic substance interaction: A combined batch, XPS, and EXAFS investigation, Environ. Sci. Pollut. Res. 20 (2013) 3708–3717.10.1007/s11356-012-1278-1
  • G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, M.B. Ghasemian, A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: Optimization, equilibrium modeling, and kinetics studies, Int. J. Environ. Sci. Technol. 10(2) (2013) 325–340.10.1007/s13762-012-0135-6
  • S. Nethaji, A. Sivasamy, A.B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, Int. J. Environ. Sci. Technol. 10(2) (2013) 231–242.10.1007/s13762-012-0112-0
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.10.1021/ja02242a004
  • H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385–470.
  • O. Redlich, D.L. Peterson, A useful adsorption isotherm, The J. Phys. Chem. 63 (1959) 1024–1026.10.1021/j150576a611
  • M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta. Physicochimica. URSS 12 (1940) 217–225.
  • S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga. Sven. Vetensk. Handl. 24 (1898) 1–39.
  • Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem. 34 (1999) 451–465.10.1016/S0032-9592(98)00112-5
  • Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper (II) onto peat, Adsorpt. Sci. Technol. 20 (2002) 797–815.10.1260/026361702321104282
  • W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. San. Eng Div. Am. Soc. Civil Eng. 89 (1963) 31–60.
  • M. Abdel Salam, Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies, Int. J. Environ. Sci. Technol. 10(4) (2013) 677–688.10.1007/s13762-012-0127-6
  • N. Chubar, J.R. Carvalho, M.J.N. Correia, Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II), Colloid Surf., A 230 (2003) 57–65.10.1016/j.colsurfa.2003.09.014
  • M.A. Farajzadeh, A.B. Monji, Adsorption characteristics of wheat bran towards heavy metal cations, Sep. Purif. Technol. 38 (2004) 197–207.10.1016/j.seppur.2003.11.005
  • E. Malkoc, Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis, J. Hazard. Mater. 137 (2006) 899–908.10.1016/j.jhazmat.2006.03.004
  • S.R. Shukla, R.S. Pai, Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust, Sep. Purif. Technol. 43 (2005) 1–8.10.1016/j.seppur.2004.09.003
  • B.S. Gupta, M. Curran, S. Hasan, T.K. Ghosh, Adsorption characteristics of Cu and Ni on Irish peat moss, J. Environ. Manage. 90 (2008) 954–960.
  • R. Nie, X. Chang, Q. He, Z. Hu, Z. Li, Preparation of p-tert[(dimethylamino)methyl]-calix[4]arene functionalized aminopropylpolysiloxane resin for selective solid-phase extraction and preconcentration of metal ions, J. Hazard. Mater. 169 (2009) 203–209.10.1016/j.jhazmat.2009.03.084
  • S.R. Shukla, R.S. Pai, A.D. Shendarkar, Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres, Sep. Purif. Technol. 47 (2006) 141–147.10.1016/j.seppur.2005.06.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.