90
Views
1
CrossRef citations to date
0
Altmetric
Articles

Using the method of wastewater acidification to improve the efficiency of carbon utilization and nutrient removal in A2N process from a lab-scale operation

, , &
Pages 3473-3481 | Received 16 Mar 2014, Accepted 05 Nov 2014, Published online: 03 Dec 2014

References

  • I. Nhapi, M.A. Siebel, H.J. Gijzen, The impact of urbanization on the water quality of Lake Chivero, Zimbabwe, Water Environ. J. 18 (2004) 44–49.10.1111/wej.2004.18.issue-1
  • L. García, I. Pardo, C. Delgado, Macroinvertebrate indicators of ecological status in Mediterranean temporary stream types of the Balearic Islands, Ecol. Indic. 45 (2014) 650–663.10.1016/j.ecolind.2014.05.030
  • K.P. Brodersen, P.C. Dall, C. Lindegaard, The fauna in the upper stony littoral of Danish lakes: Macroinvertebrates as trophic indicators, Freshwater Biol. 39 (1998) 577–592.10.1046/j.1365-2427.1998.00298.x
  • J. White, K. Irvine, The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes, Aquat. Conserv. Mar. Freshwater Ecosyst. 13 (2003) 331–351.10.1002/(ISSN)1099-0755
  • X. Xu, G. Liu, L. Zhu, Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source, Bioresour. Technol. 102 (2011) 10340–10345.10.1016/j.biortech.2011.08.108
  • J.A. Baeza, D. Gabriel, J. Lafuente, Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP), Process Biochem. 39 (2004) 1615–1624.10.1016/S0032-9592(03)00300-5
  • W. Zeng, L. Li, Y. Yang, X. Wang, Y. Peng, Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic–anoxic–aerobic (A2O) process treating domestic wastewater, Enzyme Microb. Technol. 48 (2011) 134–142.10.1016/j.enzmictec.2010.10.010
  • H.Y. Chang, C.F. Ouyang, Improvement of nitrogen and phosphorus removal in the anaerobic–oxic–anoxic–oxic (AOAO) process by stepwise feeding, Water Sci. Technol. 42 (2000) 89–94.
  • P.S. Barker, P.L. Dold, Denitrification behaviour in biological excess phosphorus removal activated sludge systems, Water Res. 30 (1996) 769–780.10.1016/0043-1354(95)00217-0
  • X.D. Hao, M.C.M. Van Loosdrecht, S.C.F. Meuer, Y. Qian, Model-based evaluation of two BNR processes—UCT and A2N, Water Res. 35 (2001) 2851–2860.10.1016/S0043-1354(00)00596-0
  • M.C.M. van Loosdrecht, F.A. Brandse, A.C. de Vries, Upgrading of wastewater treatment processes for integrated nutrient removal—The BCFSs process, Water Sci. Technol. 37 (1998) 209–217.10.1016/S0273-1223(98)00290-X
  • X. Hu, L. Xie, H. Shim, S. Zhang, D. Yang, Biological nutrient removal in a full scale anoxic/anaerobic/aerobic/pre-anoxic-MBR plant for low C/N ratio municipal wastewater treatment, Chin. J. Chem. Eng. 22 (2014) 447–454.10.1016/S1004-9541(14)60064-1
  • J. Tong, Y. Chen, Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment, Water Res. 43 (2009) 2969–2976.10.1016/j.watres.2009.04.015
  • X. Zheng, Y. Chen, C. Liu, Waste activated sludge alkaline fermentation liquid as carbon source for biological nutrients removal in anaerobic followed by alternating aerobic–anoxic sequencing batch reactors, Chin. J. Chem. Eng. 18 (2010) 478–485.10.1016/S1004-9541(10)60246-7
  • L. Feng, Y. Chen, X. Zheng, Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: The effect of pH, Environ. Sci. Technol. 43 (2009) 4373–4380.10.1021/es8037142
  • M. Kumar, P.Y. Lee, T. Fukusihma, L.M. Whang, J.G. Lin, Effect of supplementary carbon addition in the treatment of low C/N high-technology industrial wastewater by MBR, Bioresour. Technol. 113 (2012) 148–153.10.1016/j.biortech.2011.12.102
  • H.Y. Wu, J.Y. Gao, D.H. Yang, Q. Zhou, B.J. Cai, Improved nitrogen removal effect in continuous flow A2O process using typical extra carbon source, AIP Conf. Proc. 1251 (2010) 57–60.10.1063/1.3529342
  • J.P. Kerrnjespersen, M. Henze, R. Strube, Biological phosphorus release and uptake under alternating anaerobic and anoxic conditions in a fixed-film reactor, Water Res. 28 (1994) 1253–1255.10.1016/0043-1354(94)90215-1
  • N. Frison, S.D. Fabio, C. Cavinato, P. Pavan, F. Fatone, Best available carbon sources to enhance the via-nitrite biological nutrients removal from supernatants of anaerobic co-digestion, Chem. Eng. J. 215 (2013) 15–22.10.1016/j.cej.2012.10.094
  • Y. Miron, G. Zeeman, J.B. Lier, G. Lettinga, The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems, Water Res. 34 (2000) 1705–1713.10.1016/S0043-1354(99)00280-8
  • A.S. Ucisik, M. Henze, Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids, Water Res. 42 (2008) 3729–3738.10.1016/j.watres.2008.06.010
  • W. Gujer, A.J.B. Zehnder, Conversion processes in anaerobic digestion, Water Sci. Technol. 15 (1983) 127–167.
  • S. Xie, P.G. Lawlor, J.P. Frost, G. Wu, X. Zhan, Hydrolysis and acidification of grass silage in leaching bed reactors, Bioresour. Technol. 114 (2012) 406–413.10.1016/j.biortech.2012.03.008
  • J. Mata-Alvarez, A dynamic simulation of a two-phase anaerobic digestion system for solid wastes, Biotechnol. Bioeng. 30 (1987) 844–851.10.1002/(ISSN)1097-0290
  • C.M. Guo, Y. Chen, J.F. Chen, X.J. Wang, G.Q. Zhang, J.X. Wang, W.F. Cui, Z.Z. Zhang, Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment, Bioresour. Technol. 169 (2014) 630–636.10.1016/j.biortech.2014.07.018
  • X. Zhang, W.H. Qiu, H.Z. Chen, Enhancing the hydrolysis and acidification of steam-exploded cornstalks by intermittent pH adjustment with an enriched microbial community, Bioresour. Technol. 123 (2012) 30–35.10.1016/j.biortech.2012.07.054
  • P. Elefsiniotis, D.G. Wareham, Utilization patterns of volatile fatty acids in the denitrification reaction, Enzyme Microb. Technol. 41 (2007) 92–97.10.1016/j.enzmictec.2006.12.006
  • N.M. Lee, T. Welander, The effect of different carbon sources on respiratory denitrification in biological wastewater treatment, J. Ferment. Bioeng. 82 (1996) 277–285.10.1016/0922-338X(96)88820-9
  • Y.Y. Wang, Y.Z. Peng, T.W. Li, M. Ozaki, A. Takigawa, S.Y. Wang, Phosphorus removal under anoxic conditions in a continuous-flow A2N two-sludge process, Water Sci. Technol. 50 (2004) 37–44.
  • J. Meinhold, E. Arnold, S. Isaacs, Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge, Water Res. 33 (1999) 1871–1883.10.1016/S0043-1354(98)00411-4
  • APHA (American Public Health Association), Standard Methods for the Examination of Water and Wastewater, twentieth ed., Washington, DC, 1998.
  • J. Tong, Y. Chen, Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation, Environ. Sci. Technol. 41 (2007) 7126–7130.10.1021/es071002n
  • H. Yuan, Y. Chen, H. Zhang, S. Jiang, Q. Zhou, G. Gu, Improved bioproduction of short-chain fatty acids (VFAs) from excess sludge under alkaline conditions, Environ. Sci. Technol. 40 (2006) 2025–2029.10.1021/es052252b
  • D.B. Karr, J.K. Waters, D.W. Emerich, Analysis of poly-β -hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection, Appl. Environ. Microbiol. 46 (1983) 1339–1344.
  • M. Rodgers, G. Wu, Production of poly-hydroxybutyrate by activated sludge performing enhanced biological phosphorus removal, Bioresour. Technol. 101 (2010) 1049–1053.10.1016/j.biortech.2009.08.107
  • E.R. Coats, A. Mockos, F.J. Loge, Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal, Bioresour. Technol. 102 (2011) 1019–1027.10.1016/j.biortech.2010.09.104
  • J.L. Parrou, J. Francois, A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells, Anal. Biochem. 248 (1997) 186–188.10.1006/abio.1997.2138
  • H.B. Chen, Q. Yang, X.M. Li, Y. Wang, K. Luo, G.M. Zeng, Post-anoxic denitrification via nitrite driven by PHB in feast–famine sequencing batch reactor, Chemosphere 92 (2013) 1349–1355.10.1016/j.chemosphere.2013.05.052
  • S.C. Wu, S.Z. Liou, C.M. Lee, Correlation between bio-hydrogen production and polyhydroxybutyrate (PHB) synthesis by Rhodopseudomonas palustris WP3-5, Bioresour. Technol. 113 (2012) 44–50.10.1016/j.biortech.2012.01.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.