76
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimization of photocatalytic degradation of β-naphthol using nano TiO2-activated carbon composite

, , &
Pages 4708-4719 | Received 20 Jul 2014, Accepted 27 Nov 2014, Published online: 22 Dec 2014

References

  • M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treatment by titanium dioxide: Recent updates, Catalysts 2 (2012) 572–601.10.3390/catal2040572
  • J.D. Meeker, L. Ryan, D.B. Barr, R. Hauser, Exposure to nonpersistent insecticides and male reproductive hormones, Epidemiology 17 (2006) 61–68.10.1097/01.ede.0000190602.14691.70
  • A. Lair, C. Ferronato, J.M. Chovelon, J.M. Herrmann, Naphthalene degradation in water by heterogeneous photocatalysis: An investigation of the influence of inorganic anions, J. Photochem. Photobiol. A: Chem. 193 (2008) 193–203.10.1016/j.jphotochem.2007.06.025
  • M. Antonopoulou, E. Evgenidou, D. Lambropoulou, I. Konstantinou, A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media, Water. Res. 53 (2014) 215–234.10.1016/j.watres.2014.01.028
  • B. Vaferi, M. Bahmani, P. Keshavarz, D. Mowla, Experimental and theoretical analysis of the UV/H2O2 advanced oxidation processes treating aromatic hydrocarbons and MTBE from contaminated synthetic wastewaters, J. Environ. Chem. Eng. 2 (2014) 1252–1260.10.1016/j.jece.2014.05.016
  • M. Yang, X. Liu, J. Chen, F. Meng, Y. Zhang, H. Brandl, T. Lippert, N. Chen, Photocatalytic and electrochemical degradation of methylene blue by titanium dioxide, Chin. Sci. Bull. 59 (2014) 1964–1967.10.1007/s11434-014-0267-9
  • A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem Rev. 1 (2000) 1–21.10.1016/S1389-5567(00)00002-2
  • U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide. A review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. 9 (2008) 1–12.10.1016/j.jphotochemrev.2007.12.003
  • S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull. 56 (2011) 1639–1657.10.1007/s11434-011-4476-1
  • M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors, Nanoscale. Res. Lett. 7 (2012) 1–12.10.1186/1556-276X-7-1
  • B. Krishnakumar, K. Selvam, R. Velmurugan, M. Swaminathan, Influence of operational parameters on photodegradation of acid black 1 with ZnO, Desalin. Water Treat. 24 (2010) 132–139.10.5004/dwt.2010.1466
  • B. Subash, B. Krishnakumar, V. Pandiyan, M. Swaminathan, M. Shanthi, Synthesis and characterization of novel WO3 loaded Ag-ZnO and its photocatalytic activity, Mater. Res. Bull. 48 (2013) 63–69.10.1016/j.materresbull.2012.10.010
  • N. Sobana, B. Krishnakumar, M. Swaminathan, Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide, Mater. Sci. Semicond. Process. 16 (2013) 1046–1051.10.1016/j.mssp.2013.01.002
  • B. Krishnakumar, T. Imae, J. Miras, J. Esquena, Synthesis azo dye photodegradation activity of ZrS2-ZnO nano-composites, Sep. Purif. Technol. 132 (2014) 281–288.10.1016/j.seppur.2014.05.018
  • C. Duarte, M. Sampa, P. Rela, H. Oikawa, C. Silveira, A. Azevedo, Advanced oxidation process by electron-beam-irradiation-induced decomposition of pollutants in industrial effluents, Radiat. Phys. Chem. 63 (2002) 647–651.10.1016/S0969-806X(01)00560-6
  • A. Khataee, V. Vatanpour, A. Amani Ghadim, Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative, J. Hazar. Mater. 161 (2009) 1225–1233.10.1016/j.jhazmat.2008.04.075
  • L. Sun, J.R. Bolton, Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions, J. Phys. Chem. 100 (1996) 4127–4134.10.1021/jp9505800
  • C. Wong, W. Chu, The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources, Chemosphere 50 (2003) 981–987.10.1016/S0045-6535(02)00640-9
  • W. Wu, X. Xiao, S. Zhang, F. Ren, C. Jiang, Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue, Nanoscale. Res. Lett. 6 (2011) 1–15.
  • S. Qourzal, A. Assabbane, Y.A. Ait-Ichou, Synthesis of TiO2 via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol, J. Photochem. Photobiol. A Photochem. 163 (2004) 317–321.10.1016/j.jphotochem.2003.12.013
  • S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: Identification of intermediates and the reaction pathway, Appl. Catal A: Gen. 334 (2008) 386–393.10.1016/j.apcata.2007.09.034
  • S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, A. Nounah, A. Ihlal, Y. Ait-Ichou, Sol–gel synthesis of TiO2 SiO2 photocatalyst for β-naphthol photodegradation, J. Mater. Sci. Eng.: C. 29 (2009) 1616–1620.10.1016/j.msec.2008.12.024
  • S. Qourzal, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Photocatalytic degradation and adsorption of 2-naphthol on suspended TiO2 surface in a dynamic reactor, J. Colloid. Interface Sci. 286 (2005) 621–626.10.1016/j.jcis.2005.01.046
  • S. Qourzal, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Photodegradation of 2-naphthol using nanocrystalline TiO2, M. J. Condensed. Mater. 11 (2009) 55–59.
  • S. Weng, Z. Pei, Z. Zheng, J. Hu, P. Liu, Exciton-free, nonsensitized degradation of 2-naphthol by facet-dependent biocl under visible light: Novel evidence of surface-state photocatalysis, ACS. Appl. Mater. Interfaces 5 (2013) 12380–12386.10.1021/am403214r
  • N. Daneshvar, D. Salari, A. Khataee, Photocatalytic degradation of azo dye acid red 14 in water: Investigation of the effect of operational parameters, J. Photochem. Photobiol. A: Chem. 157 (2003) 111–116.10.1016/S1010-6030(03)00015-7
  • J.M. de Souza e Silva, M. Pastorello, M. Strauss, C.M. Maroneze, F.A. Sigoli, Y. Gushikem, I.O. Mazali, Size controlled synthesis of highly dispersed anatase/rutile nanoparticles with photocatalytic activity toward salicylic acid degradation, RSC. Adv. 2 (2012) 5390–5397.10.1039/c2ra20453c
  • Y.H. Jung, K.H. Park, J.S. Oh, D.H. Kim, C.K. Hong, Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells, Nanoscale. Res. Lett. 8 (2013) 1–6.
  • X. Zhou, J. Lu, J. Jiang, X. Li, M. Lu, G. Yuan, Z. Wang, M. Zheng, H.J. Seo, Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity, Nanoscale. Res. Lett. 9 (2014) 1–7.
  • T. Zhang, L. Liu, F. Yang, Y. Wang, J. Kang, Improved conversion efficiency of dye-sensitized solar cells by using novel complex nanostructured TiO2 electrodes, Sci. Chin. Technol. Sci. 56 (2013) 115–119.10.1007/s11431-012-5012-5
  • B. Tan, Y. Zhang, M. Long, Large-scale preparation of nanoporous TiO2 film on titanium substrate with improved photoelectrochemical performance, Nanoscale. Res. Lett. 9 (2014) 1–6.
  • T.L. Thompson Jr., J.T. Yates Jr., Surface science studies of the photoactivation of TiO2-new photochemical processes, Chem. Rev. 106 (2007) 4428–4453.
  • S. Kittaka, K. Matsuno, S. Takahara, Transformation of ultrafine titanium dioxide particles from rutile to anatase at negatively charged colloid surfaces, J. Solid. State. Chem. 132 (1997) 447–450.10.1006/jssc.1997.7548
  • J.H. Lee, Y.S. Yang, Effect of HCl concentration and reaction time on the change in the crystalline state of TiO2 prepared from aqueous TiCl4 solution by precipitation, J. Eur. Ceram. Soc. 25 (2005) 3573–3578.10.1016/j.jeurceramsoc.2004.09.024
  • Q.H. Zhang, L. Gao, J.K. Guo, Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution, Nanoscale. Res. Lett. 11 (1999) 1293–1300.
  • M. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst, J. Hazar. Mater. 133 (2006) 226–232.10.1016/j.jhazmat.2005.10.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.