95
Views
19
CrossRef citations to date
0
Altmetric
Articles

Investigating on photocatalytic performance of CuO micro and nanostructures prepared by different precursors

, , &
Pages 6723-6731 | Received 02 Jul 2014, Accepted 22 Jan 2015, Published online: 13 Feb 2015

References

  • F. Bayansal, B. Sahin, M. Yuksel, N. Biyikli, H.A. Cetinkara, H.S. Guder, Influence of coumarin as an additive on CuO nanostructures prepared by successive ionic layer adsorption and reaction (SILAR) method, J. Alloys Compd. 566 (2013) 78–82.10.1016/j.jallcom.2013.03.018
  • A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar, P.K. Patanjali, Response speed of SnO2-based H2S gas sensors with CuO nanoparticles, Appl. Phys. Lett. 84 (2004) 1180–1182.10.1063/1.1646760
  • A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—A review, Solid-State Electron. 29 (1986) 7–17.10.1016/0038-1101(86)90191-7
  • J. Herion, E.A. Niekisch, G. Scharl, Investigation of metal oxide/cuprous oxide heterojunction solar cells, Sol. Energy Mater. 4 (1980) 101–112.10.1016/0165-1633(80)90022-2
  • C.L. Carnes, K.J. Klabunde, The catalytic methanol synthesis over nanoparticle metal oxide catalysts, J. Mol. Catal. A: Chem. 194 (2003) 227–236.10.1016/S1381-1169(02)00525-3
  • X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.X. Huang, F. Wu, D.Y. Song, Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery, J. Phys. Chem. B 108 (2004) 5547–5551.10.1021/jp037075k
  • W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Synthesis and magnetic properties of Mn doped CuO nanowires, Phys. Lett. A 375 (2010) 180–182.10.1016/j.physleta.2010.10.065
  • O. Eibl, Application of a new method for absorption correction in high-accuracy, quantitative EDX microanalysis in the TEM: Analysis of oxygen in CuO-based high-Tc superconductors, Ultramicroscopy 50 (1993) 189–201.10.1016/0304-3991(93)90009-M
  • S. Wang, H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang, CTAB-assisted synthesis and photocatalytic property of CuO hollow microspheres, J. Solid State Chem. 182 (2009) 1088–1093.10.1016/j.jssc.2009.01.042
  • S. Xu, A.J. Du, J. Liu, J. Ng, D.D. Sun, Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water, Int. J. Hydrogen Energy 36 (2011) 6560–6568.10.1016/j.ijhydene.2011.02.103
  • N. Mukherjee, B. Show, S.K. Maji, U. Madhu, S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Mater. Lett. 65 (2011) 3248–3250.10.1016/j.matlet.2011.07.016
  • J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li, S. Huang, Preparation of spindly CuO micro-particles for photodegradation of dye pollutants under a halogen tungsten lamp, Appl. Catal. A 406 (2011) 51–58.10.1016/j.apcata.2011.08.007
  • Y. Li, J. Liang, Z. Tao, J. Chen, CuO particles and plates: Synthesis and gas-sensor application, Mater. Res. Bull. 43 (2008) 2380–2385.10.1016/j.materresbull.2007.07.045
  • T. Premkumar, K.E. Geckeler, A green approach to fabricate CuO nanoparticles, J. Phys. Chem. Solids 67 (2006) 1451–1456.10.1016/j.jpcs.2006.01.122
  • X. Wen, W. Zhang, S. Yang, Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface, Langmuir 19 (2003) 5898–5903.10.1021/la0342870
  • H. Hou, Y. Xie, Q. Li, Large-scale synthesis of single-crystalline quasi-aligned submicrometer CuO ribbons, Cryst. Growth Des. 5 (2004) 201–205.
  • J. Liu, X. Huang, Y. Li, K.M. Sulieman, X. He, F. Sun, Hierarchical nanostructures of cupric oxide on a copper substrate: Controllable morphology and wettability, J. Mater. Chem. 16 (2006) 4427–4434.10.1039/b611691d
  • Y. Liu, L. Liao, J. Li, C. Pan, From copper nanocrystalline to CuO nanoneedle array: Synthesis, growth mechanism, and properties, J. Phys. Chem. C 111 (2007) 5050–5056.10.1021/jp069043d
  • Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, Z. Zhang, CuO shuttle-like nanocrystals synthesized by oriented attachment, J. Cryst. Growth 291 (2006) 196–201.10.1016/j.jcrysgro.2006.02.044
  • J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, CuO nanocrystals with controllable shapes grown from solution without any surfactants, Mater. Chem. Phys. 109 (2008) 34–38.10.1016/j.matchemphys.2007.10.027
  • O. Akhavan, R. Azimirad, S. Safa, E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts, J. Mater. Chem. 21 (2011) 9634–9640.10.1039/c0jm04364h
  • R. Azimirad, S. Safa, Photocatalytic and antifungal activity of flower-like copper oxide nanostructures, Synth. React. Inorg. Met.-Org., Nano-Metal Chem. 44 (2014) 798–803.10.1080/15533174.2013.790440
  • H. Pang, F. Gao, Q. Lu, Morphology effect on antibacterial activity of cuprous oxide, Chem. Commun. (2009) 1076–1078.10.1039/b816670f
  • S. Zaman, A. Zainelabdin, G. Amin, O. Nur, M. Willander, Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes, J. Phys. Chem. Solids 73 (2012) 1320–1325.10.1016/j.jpcs.2012.07.005
  • L. Shi, C. Yang, X. Su, J. Wang, F. Xiao, J. Fan, C. Feng, H. Sun, Microwave-hydrothermal synthesis of CuO nanorods and their catalytic applications in sodium humate synthesis and RhB degradation, Ceram. Int. 40 (2014) 5103–5106.10.1016/j.ceramint.2013.10.104
  • J. Xia, H. Li, Z. Luo, H. Shi, K. Wang, H. Shu, Y. Yan, Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids, J. Phys. Chem. Solids 70 (2009) 1461–1464.10.1016/j.jpcs.2009.08.006
  • C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach, Plenum, New York NY, 1998.10.1007/978-1-4899-0148-4
  • S. Ahmed, M.G. Rasul, W.N. Marten, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, Desalination 261 (2010) 3–18.10.1016/j.desal.2010.04.062
  • C. Chen, Y. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Reduction of nanostructured CuO bundles: Correlation between microstructure and reduction properties, Cryst. Growth Des. 8 (2008) 3549–3554.10.1021/cg7011843
  • M. Vaseem, A. Umar, Y. Hahn, D. Kim, K. Lee, J. Jang, J. Lee, Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies, Catal. Commun. 10 (2008) 11–16.10.1016/j.catcom.2008.07.022
  • T. Vimalkumar, N. Poornima, C.S. Kartha, K. Vijayakumar, Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films, Mater. Sci. Eng. B 175 (2010) 29–35.10.1016/j.mseb.2010.06.012
  • M.A. Abbasi, Y. Khan, S. Hussain, O. Nur, M. Willander, Anions effect on the low temperature growth of ZnO nanostructures, Vacuum 86 (2012) 1998–2001.10.1016/j.vacuum.2012.05.020
  • S. Cho, S.-H. Jung, K.-H. Lee, Morphology-controlled growth of ZnO nanostructures using microwave irradiation: From basic to complex structures, J. Phys. Chem. C 112 (2008) 12769–12776.10.1021/jp803783s
  • Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Prog. Mater. Sci. 60 (2014) 208–337.10.1016/j.pmatsci.2013.09.003
  • M. Guo, P. Diao, S. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions, J. Solid State Chem. 178 (2005) 1864–1873.10.1016/j.jssc.2005.03.031
  • G. Guerguerian, F. Elhordoy, C.J. Pereyra, R.E. Marotti, F. Martín, D. Leinen, J.R. Ramos-Barrado, E.A. Dalchiele, ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications, Nanotechnology 22 (2011) 1–9, 505401. 10.1088/0957-4484/22/50/505401

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.