304
Views
30
CrossRef citations to date
0
Altmetric
Articles

Evaluation and removal of emerging nanoparticle contaminants in water treatment: a review

, , , , , , & show all
Pages 11221-11232 | Received 23 Mar 2014, Accepted 01 Apr 2015, Published online: 21 Apr 2015

References

  • A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K. Donaldson, G. Oberdörster, Safe handling of nanotechnology, Nature 444(7117) (2006) 267–269.10.1038/444267a
  • B. Karn, T. Kuiken, M. Otto, Nanotechnology and in situ remediation: A review of the benefits and potential risks, Environ. Health Perspect. 117(12) (2009) 1823–1831.10.1289/ehp.0900793
  • E. Hoseinzadeh, M.Y. Alikhani, M.R. Samarghandi, M. Shirzad-Siboni, Antimicrobial potential of synthesized zinc oxide nanoparticles against gram positive and gram negative bacteria, Desalin. Water Treat. 52 (2014) 4969–4976.10.1080/19443994.2013.810356
  • T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: A review, Desalin. Water Treat. 52 (2014) 4089–4101.10.1080/19443994.2013.801789
  • R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology, J. Hazard. Mater. 211–212 (2012) 112–125.10.1016/j.jhazmat.2011.11.073
  • C. Noubactep, S. Caré, R. Crane, Nanoscale metallic iron for environmental remediation: Prospects and limitations, Water Air Soil Pollut. 223 (2012) 1363–1382.10.1007/s11270-011-0951-1
  • D. Hristozov, J. Ertel, Nanotechnology and substainability: benefits and risks of nanotechnology for environmental substainability, Forum der Forschung 22 (2009) 161–168.
  • S.D. Richardson, Environmental mass spectrometry: Emerging contaminants and current issues, Anal. Chem. 80 (2008) 4373–4402.10.1021/ac800660d
  • N. Chrzanowska, M. Załęska-Radziwiłł, The impacts of aluminum and zirconium nano-oxides on planktonic and biofilm bacteria, Desalin. Water Treat. 52 (2014) 3680–3689.10.1080/19443994.2014.884528
  • E.J. Gubbins, L.C. Batty, J.R. Lead, Phytotoxicity of silver nanoparticles to Lemna minor L, Environ. Pollut. 159(6) (2011) 1551–1559.10.1016/j.envpol.2011.03.002
  • L.Y. Yin, Y.W. Cheng, B. Espinasse, B.P. Colman, M. Auffan, M. Wiesner, J. Rose, J. Liu, E.S. Bernhardt, More than the ions: The effects of silver nanoparticles on Lolium multiflorum, Environ. Sci. Technol. 45(6) (2011) 2360–2367.10.1021/es103995x
  • P.V. Asharani, Y. Lian Wu, Z. Gong, S. Valiyaveettil, Toxicity of silver nanoparticles in zebrafish models, Nanotechnology 19(25) (2008) 255102.10.1088/0957-4484/19/25/255102
  • A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A.  Adin, Silver nanoparticle-E.coli colloidal interaction in water and effect on E-coli survival, J. Colloid Interface Sci. 339(2) (2009) 521–526.
  • W. Lu, D. Senapati, S. Wang, O. Tovmachenko, A.K. Singh, H. Yu, P.C. Ray, Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes, Chem. Phys. Lett. 487 (2010) 92–96.10.1016/j.cplett.2010.01.027
  • P.V. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano 3(2) (2009) 279–290.10.1021/nn800596w
  • H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells, J. Environ. Sci. Health Part A 41(12) (2006) 2699–2711.10.1080/10934520600966177
  • C.L. Tran, D. Buchanan, R.T. Cullen, A. Searl, A.D. Jones, K. Donaldson, Inhalation of poorly soluble particles II Influence of particle surface area on inflammation and clearance, Inhal. Toxicol. 12 (2000) 1113–1126.
  • Y. Teow, P.V. Asharani, M.P. Hande, S. Valiyaveettil, Health impact and safety of engineered nanomaterials, Chem. Commun. 47 (2011) 7025–7038.10.1039/c0cc05271j
  • M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanoparticles, Environ. Sci. Technol. 40(14) (2006) 4336–4365.
  • G. Oberdörster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W. Kreyling, C. Cox, Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol. 16(6–7) (2004) 437–445.10.1080/08958370490439597
  • A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, G. Oberdörster, Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Perspect. 114 (2006) 1172–1178.
  • T.R. Nurkiewicz, D.W. Porter, A.F. Hubbs, J.L. Cumpston, B.T. Chen, D.G. Frazer, V. Castranova, Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction, Part. Fibre Toxicol. 5(1) (2008) 1–12.10.1186/1743-8977-5-1
  • M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanoparticles, Environ. Sci. Technol. 40(14) (2006) 4336–4365.
  • M.C. Powell, M.S. Kanarek, Nanomaterial health effects-part 2: Uncertainties and recommendations for the future, Wisc. Med. J. 105(3) (2006) 18–23.
  • A.P. Blank, M.R. Vilaret, Effect of particle size on turbidity removal, J. Am. Water Works Assn. 61(4) (1969) 209–214.
  • T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, A. Bruinink, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility, Environ. Sci. Technol. 40(14) (2006) 4374–4381.10.1021/es052069i
  • M. Tagawa, K. Gotoh, M. Yokokura, A. Syutoh, S. Takechi, Influence of surface properties of particles on their adhesion and removal, Colloid Polym. Sci. 267(5) (1989) 434–439.10.1007/BF01410189
  • K.L. Chen, M. Elimelech, Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications, Environ. Sci. Technol. 42 (2008) 7607–7614.10.1021/es8012062
  • B.J.R. Thio, D.X. Zhou, A.A. Keller, Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles, J. Hazard. Mater. 189 (2011) 556–563.10.1016/j.jhazmat.2011.02.072
  • K.L. Chen, M. Elimelech, Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions, J. Colloid Interface Sci. 309 (2007) 126–134.10.1016/j.jcis.2007.01.074
  • A.M.E. Badawy, T.P. Luxton, R.G. Silva, K.G. Scheckel, M.T. Suidan, T.M. Tolayma, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol. 44 (2010) 1260–1266.10.1021/es902240k
  • P. Ball, Natural strategies for the molecular engineer, Nanotechnology 13 (2002) R15–R28.10.1088/0957-4484/13/5/201
  • B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environ. Pollut. 150 (2007) 5–22.10.1016/j.envpol.2007.06.006
  • M.C. Roco, Nanotechnology: Convergence with modern biology and medicine, Curr. Opin. Biotechnol. 14 (2003) 337–346.10.1016/S0958-1669(03)00068-5
  • H. Weinberg, A. Galyean, M. Leopold, Evaluating engineered nanoparticles in natural waters, Trends Anal. Chem. 30 (2011) 72–83.10.1016/j.trac.2010.09.006
  • N.B. Saleh, L.D. Pfefferle, M. Elimelech, Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications, Environ. Sci. Technol. 42(21) (2008) 7963–7969.10.1021/es801251c
  • A.A. Keller, H.T. Wang, D.X. Zhou, H.S. Lenihan, G. Cherr, B.J. Cardinale, R. Miller, Z.X. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices, Environ. Sci. Technol. 44(6) (2010) 1962–1967.10.1021/es902987d
  • S. Ghosh, H. Mashayekhi, P. Bhowmik, B.S. Xing, Colloidal Stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids, Langmuir 26(2) (2010) 873–879.10.1021/la902327q
  • R.L. Johnson, G.O. Johnson, J.T. Nurmi, P.G. Tratnyek, Natural organic matter enhanced mobility of nano zerovalent iron, Environ. Sci. Technol. 43(14) (2009) 5455–5460.10.1021/es900474f
  • P.S. Dylan, E.L. Samuel, E.H. James, A.N. Jeffrey, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents, Environ. Sci. Technol. 45 (2011) 3238–3244.
  • H. Hyung, J.D. Fortner, J.B. Hughes, J.H. Kim, Natural organic matter stabilizes carbon nanotubes in the aqueous phase, Environ. Sci. Technol. 41 (2007) 179–184.10.1021/es061817g
  • A.J. Pelley, N. Tufenkji, Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media, J. Colloid Interface Sci. 321 (2008) 74–83.10.1016/j.jcis.2008.01.046
  • K.A. Dunphy Guzmán, M.R. Taylor, J.F. Banfield, Environmental Risks of Nanotechnology:  National Nanotechnology Initiative Funding, 2000−2004, Environ. Sci. Technol. 40 (2006) 1401–1407.10.1021/es0515708
  • B. Stolpe, M. Hassellöv, Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater, Geochim. Cosmochim. Acta 71 (2007) 3292–3301.10.1016/j.gca.2007.04.025
  • L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Res. 40 (2006) 3527–3532.10.1016/j.watres.2006.08.004
  • K. Tiede, S.P. Tear, H. David, A.B.A. Boxall, Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices, Water Res. 43 (2009) 3335–3343.10.1016/j.watres.2009.04.045
  • D.J. Burleson, M.D. Driessen, R.L. Penn, On the characterization of environmental nanoparticles, J. Environ. Sci. Health., Part A 39 (2004) 2707–2753.10.1081/ESE-200027029
  • D.C. Joy, C.S. Joy, Scanning electron microscope imaging in liquids—some data on electron interactions in water, J. Microsc. 221 (2006) 84–88.
  • S. Thiberge, O. Zik, E. Moses, An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy, Rev. Sci. Instrum. 75 (2004) 2280–2289.10.1063/1.1763262
  • A. Bootz, V. Vogel, D. Schubert, J. Kreuter, Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles, Eur. J. Pharm. Biopharm. 57 (2004) 369–375.10.1016/S0939-6411(03)00193-0
  • N.M. Thang, R. Knopp, H. Geckeis, J.I. Kim, H.P. Beck, Detection of nanocolloids with flow-field flow fractionation and laser-induced breakdown detection, Anal. Chem. 72 (2000) 1–5.10.1021/ac991016e
  • T. Bundschuh, R. Knopp, J.I. Kim, Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems, Colloid Surface A 177 (2001) 47–55.10.1016/S0927-7757(99)00497-5
  • J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol. 39 (2005) 1221–1230.
  • M. Hassellöv, B. Lyvén, C. Haraldsson, W. Sirinawin, Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICPMS, Anal. Chem. 71 (1999) 3497–3502.10.1021/ac981455y
  • B. Stolpe, M. Hassellöv, K. Andersson, D. Turner, High resolution ICP-MS as an on-line detector for flow field-flow fractionation; multi-element determination of colloidal size distributions in a natural water, Anal. Chem. Acta 535 (2005) 109–121.10.1016/j.aca.2004.11.067
  • J.F. Ranville, D.J. Chittleborough, F. Shanks, R.J.S. Morrison, T. Harris, F. Doss, R. Beckett, Development of sedimentation field-flow fractionation-inductively coupled plasma mass-spectrometry for the characterization of environmental colloids, Anal. Chim. Acta 381 (1999) 315–329.10.1016/S0003-2670(98)00702-8
  • E.M. Heithmar, S.A. Pergantis, Characterizing concentrations and size distributions of metal-containing nanoparticles in waste water, US EPA report, EPA/600/R-10/117, 2010.
  • C. Noubactep, A. Schöner, Metallic iron: Dawn of a new era of drinking water treatment research? Fresenius Environ. Bull. 19(8a) (2010) 1661–1668.
  • C.W. Isaacson, C.Y. Usenko, R.L. Tanguay, J.A. Field, Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays, Anal. Chem. 79 (2007) 9091–9097.10.1021/ac0712289
  • M. Farré, S. Pérez, K. Gajda-Schrantz, V. Osorio, L. Kantiani, A. Ginebreda, D. Barceló, First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry, J. Hydrol. 383 (2010) 44–51.10.1016/j.jhydrol.2009.08.016
  • A.P. van Wezel, V. Morinière, E. Emke, T. ter Laak, A.C. Hogenboom, Quantifying summed fullerene nC60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples, Environ. Int. 37 (2011) 1063–1067.10.1016/j.envint.2011.03.020
  • L. Jiang, L. Gao, J. Sun, Production of aqueous colloidal dispersions of carbon nanotubes, J. Colloid Interface Sci. 260 (2003) 89–94.10.1016/S0021-9797(02)00176-5
  • B.L. Chen, J.P. Selegue, Separation and characterization of single-walled and multiwalled carbon nanotubes by using flow field-flow fractionation, Anal. Chem. 74 (2002) 4774–4780.10.1021/ac020111b
  • A. Amirtharajah, K.M. Mills, Rapid-mix design for mechanism of alum coagulation, J. Am. Water Works Assn. 74(4) (1982) 210–216.
  • G.A. Edwards, A. Amirtharajah, Removing color caused by humic acids, J. Am. Water Works Assn. 77(3) (1985) 50–57.
  • B.A. Dempsey, R.M. Gahno, C.R. O’Melia, The coagulation of humic substances by means of aluminum salts, J. Am. Water Works Assn. 76(4) (1984) 141–150.
  • C. Guigui, J.C. Rouch, L. Durand-Bourlier, V. Bonnelye, P. Aptel, Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production, Desalination 147(1–3) (2002) 95–100.10.1016/S0011-9164(02)00582-9
  • E. Barbot, S. Moustier, J.Y. Bottero, P. Moulin, Coagulation and ultrafiltration: Understanding of the key parameters of the hybrid process, J. Membr. Sci. 325(2) (2008) 520–527.10.1016/j.memsci.2008.07.054
  • Y.H. Choi, H.S. Kim, J.H. Kweon, Role of hydrophobic natural organic matter flocs on the fouling in coagulation membrane processes, Sep. Purif. Technol. 62(3) (2008) 529–534.10.1016/j.seppur.2008.03.001
  • C.W.K. Chow, R. Fabris, J. Leeuwen, D. Wang, M. Drikas, Assessing natural organic matter treatability using high performance size exclusion chromatography, Environ. Sci. Technol. 42(17) (2008) 6683–6689.10.1021/es800794r
  • J.J. Qin, M.H. Oo, K.A. Kekre, F. Knops, P. Miller, Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water, Sep. Purif. Technol. 49(3) (2006) 295–298.10.1016/j.seppur.2005.09.016
  • C.W.K. Chow, J.A. van Leeuwen, R. Fabris, M. Drikas, Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon, Desalination 245(1–3) (2009) 120–134.10.1016/j.desal.2008.06.014
  • V. Uyak, I. Toroz, Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies, J. Hazard. Mater. 141(1) (2007) 320–328.10.1016/j.jhazmat.2006.07.007
  • N. Lindqvist, S. Korhonen, J. Jokela, T. Tuhkanen, Chemical water and wastewater treatment VIII, in: H.H. Hahn E. Hofmann, H. Odegaard (Eds.), IWA Publishing, London, 2002, p. 133.
  • N. Lindqvist, J. Jokela, T. Tuhkanen, Proceedings of the 11th International Gothenburg Symposium on Chemical Treatment of Water and Wastewater, November 8–11, Orlando, Florida, USA, 2004.
  • L. Rizzo, A. Di Gennaro, M. Gallo, V. Belgiorno, Coagulation/chlorination of surface water: A comparison between chitosan and metal salts, Sep. Purif. Technol. 62(1) (2008) 79–85.10.1016/j.seppur.2007.12.020
  • W.P. Cheng, F.H. Chi, C.C. Li, R.F. Yu, A study on the removal of organic substances from low-turbidity and low-alkalinity water with metal-polysilicate coagulants, Colloids Surf., A. 312(2–3) (2008) 238–244.10.1016/j.colsurfa.2007.06.060
  • M. Yan, D. Wang, J. Yu, J. Ni, M. Edwards, J. Qu, Enhanced coagulation with polyaluminum chlorides: Role of pH/Alkalinity and speciation, Chemosphere 71(9) (2008) 1665–1673.10.1016/j.chemosphere.2008.01.019
  • M. Yan, D. Wang, J. Ni, J. Qu, C.W.K. Chow, H. Liu, Mechanism of natural organic matter removal by polyaluminum chloride: Effect of coagulant particle size and hydrolysis kinetics, Water Res. 42(13) (2008) 3361–3370.10.1016/j.watres.2008.04.017
  • G. Lei, J. Ma, X. Guan, A. Song, Y. Cui, Effect of basicity on coagulation performance of polyferric chloride applied in eutrophicated raw water, Desalination 247(1–3) (2009) 518–529.10.1016/j.desal.2008.06.026
  • A.I. Zouboulis, P.A. Moussas, F. Vasilakou, Polyferric sulphate: Preparation, characterization and application in coagulation experiments, J Hazard Mater. 155(3) (2008) 459–468.10.1016/j.jhazmat.2007.11.108
  • A.G. El Samrani, B.S. Lartiges, F. Villiéras, Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization, Water Res. 42 (2008) 951–960.10.1016/j.watres.2007.09.009
  • Q. Chang, G. Wang, Study on the macromolecular coagulant PEX which traps heavy metals, Chem. Eng. Sci. 62 (2007) 4636–4643.10.1016/j.ces.2007.05.002
  • N.P. Hankins, N. Lu, N. Hilal, Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation, Sep. Purif. Technol. 51 (2006) 48–56.10.1016/j.seppur.2005.12.022
  • Q. Chang, M. Zhang, J.X. Wang, Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan, J. Hazard. Mater. 169 (2009b) 621–625.10.1016/j.jhazmat.2009.03.144
  • P. Westerhoff, Y. Zhang, J. Crittenden, Y. Chen, in: V.H. Grassian, Nanoscience and nanotechnology, Wiley, Hoboken, NJ, USA, 2008, pp. 71–90.
  • Y. Zhang, Y.S. Chen, P. Westerhoff, K. Hristovski, J.C. Crittenden, Stability of commercial metal oxide nanoparticles in water, Water Res. 42 (2008) 2204–2212.10.1016/j.watres.2007.11.036
  • R.D. Holbrook, C.N. Kline, J.J. Filliben, Impact of source water quality on multiwall carbon nanotube coagulation, Environ. Sci. Technol. 44 (2010) 1386–1391.10.1021/es902946j
  • H. Hyung, J.H. Kim, Dispersion of C60 in natural water and removal by conventional drinking water treatment processes, Water Res. 43 (2009) 2463–2470.10.1016/j.watres.2009.03.011
  • J.I. OH, S.H. LEE, Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production, J. Membr. Sci. 254 (2005) 39–47.10.1016/j.memsci.2004.12.030
  • M. Peuchot, R. Aim Ben, Improvement of crossflow microfiltration performances with flocculation, J. Membr. Sci. 68 (1992) 241–248.
  • T. Leiknes, H. Ødegaard, H. Myklebust, Removal of NOM in drinking water treatment by coagulation-microfiltration using metal membranes, J. Membr. Sci. 242 (2004) 47–55.10.1016/j.memsci.2004.05.010
  • K. Katsoufidou, S.G. Yiantsios, A.J. Karabelas, A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling, J. Membr. Sci. 266(1–2) (2005) 40–50.10.1016/j.memsci.2005.05.009
  • J. Moon, M.S. Kang, J.L. Lim, C.H. Kim, H.D. Park, Evaluation of a low-pressure membrane filtration for drinking water treatment: Pretreatment by coagulation/sedimentation for the MF membrane, Desalination 247 (2009) 271–284.10.1016/j.desal.2008.12.030
  • L. Fiksdal, T.O. Leiknes, The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water, J. Membr. Sci. 279(1–2) (2006) 364–371.10.1016/j.memsci.2005.12.023
  • N. Shirasaki, T. Matsushita, Y. Matsui, M. Kobuke, K. Ohno, Comparison of removal performance of two surrogates for pathogenic waterborne viruses, bacteriophage Qβ and MS2, in a coagulation–ceramic microfiltration system, J. Membr. Sci. 326(2) (2009) 564–571.10.1016/j.memsci.2008.10.037
  • H.C. Kim, J.H. Hong, S. Lee, Fouling of microfiltration membranes by natural organic matter after coagulation treatment: A comparison of different initial mixing conditions, J. Membr. Sci. 283(1–2) (2006) 266–272.10.1016/j.memsci.2006.06.041
  • K.J. Howe, A. Marwah, K.P. Chiu, S.S. Adham, Effect of coagulation on the size of MF and UF membrane foulants, Environ. Sci. Technol. 40(24) (2006) 7908–7913.10.1021/es0616480
  • J. Wang, J. Guan, S.R. Santiwong, T.D. Waite, Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling, J. Membr. Sci. 321(2) (2008) 132–138.10.1016/j.memsci.2008.04.008
  • P.K. Park, C.H. Lee, S. Lee, Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration, Environ. Sci. Technol. 40(8) (2006) 2699–2705.10.1021/es0515304
  • S.J. Judd, P. Hillis, Optimisation of combined coagulation and microfiltration for water treatment, Water Res. 35(12) (2001) 2895–2904.10.1016/S0043-1354(00)00586-8
  • K. Kimura, T. Maeda, H. Yamamura, Y. Watanabe, Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water, J. Membr. Sci. 320(1–2) (2008) 356–362.10.1016/j.memsci.2008.04.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.