108
Views
16
CrossRef citations to date
0
Altmetric
Articles

Starch-functionalized magnetite nanoparticles for hexavalent chromium removal from aqueous solutions

, &
Pages 12608-12619 | Received 02 Dec 2014, Accepted 16 May 2015, Published online: 25 Jun 2015

References

  • J.J. Testa, M.A. Grela, M.I. Litter, Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: Involvement of Cr(V) species, Environ. Sci. Technol. 38 (2004) 1589–1594.10.1021/es0346532
  • N. Shevchenko, V. Zaitsev, A. Walcarius, Bifunctionalized mesoporous silicas for Cr(VI) reduction and concomitant Cr(III) immobilization, Environ. Sci. Technol. 42 (2008) 6922–6928.10.1021/es800677b
  • V.K. Gupta, D. Pathania, S. Agarwal, S. Sharma, Removal of Cr(VI) onto Ficus carica biosorbent from water, Environ. Sci. Pollut. Res. 20 (2013) 2632–2644.10.1007/s11356-012-1176-6
  • V.K. Gupta, M. Gupta, S. Sharma, Process development for the removal of lead and chromium from aqueous solutions using red mud—An aluminium industry waste, Water Res. 35 (2001) 1125–1134.10.1016/S0043-1354(00)00389-4
  • Y.G. Zhao, H.Y. Shen, S.D. Pan, M.Q. Hu, Q.H. Xia, Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions, J. Mater. Sci. 45 (2010) 5291–5301.10.1007/s10853-010-4574-5
  • V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. 20 (2013) 1261–1268.10.1007/s11356-012-0950-9
  • V.K. Gupta, A.K. Shrivastava, N. Jain, Biosorption of chromium(VI) from aqueous solutions by green algae spirogyra species, Water Res. 35 (2001) 4079–4085.10.1016/S0043-1354(01)00138-5
  • V.K. Gupta, S. Agarwal, T.A. Saleh, Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes, Water Res. 45 (2011) 2207–2212.10.1016/j.watres.2011.01.012
  • V.K. Gupta, A. Rastogi, Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass, J. Hazard. Mater. 154 (2008) 347–354.10.1016/j.jhazmat.2007.10.032
  • M. Shi, Z. Li, Y. Yuan, T. Yue, J. Wang, R. Li, J. Chen, In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr(VI)] removal from aqueous solutions, Chem. Eng. J. 265 (2015) 84–92.10.1016/j.cej.2014.12.018
  • V.K. Gupta, A. Rastogi, Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions, J. Hazard. Mater. 163 (2009) 396–402.10.1016/j.jhazmat.2008.06.104
  • V.K. Gupta, D. Pathania, S. Sharma, S. Agarwal, P. Singh, Remediation of noxious chromium(VI) utilizing acrylic acid grafted lignocellulosic adsorbent, J. Mol. Liq. 177 (2013) 343–352.10.1016/j.molliq.2012.10.017
  • V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci. 342 (2010) 135–141.10.1016/j.jcis.2009.09.065
  • S.K. Srivastava, V.K. Gupta, D. Mohan, Removal of lead and chromium by activated slag—A blast-furnace waste, J. Environ. Eng. 123 (1997) 461–468.10.1061/(ASCE)0733-9372(1997)123:5(461)
  • S.K. Srivastava, V.K. Gupta, D. Mohan, Kinetic parameters for the removal of lead and chromium from wastewater using activated carbon developed from fertilizer waste material, Environ. Model. Assess. 1 (1996) 281–290.10.1007/BF01872156
  • V.K. Gupta, I. Ali, Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste, J. Colloid Interface Sci. 271 (2004) 321–328.10.1016/j.jcis.2003.11.007
  • A. Mittal, D. Kaur, A. Malviya, J. Mittal, V.K. Gupta, Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents, J. Colloid Interface Sci. 337 (2009) 345–354.10.1016/j.jcis.2009.05.016
  • V.K. Gupta, A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles, Chem. Eng. J. 180 (2012) 81–90.10.1016/j.cej.2011.11.006
  • P.N. Singh, D. Tiwary, I. Sinha, Improved removal of Cr(VI) by starch functionalized iron oxide nanoparticles, J. Environ. Chem. Eng. 2 (2014) 2252–2258.10.1016/j.jece.2014.10.003
  • V.K. Singh, P.N. Tiwari, Removal and recovery of chromium(VI) from industrial waste water, J. Chem. Technol. Biotechnol. 69 (1997) 376–382.10.1002/(ISSN)1097-4660
  • N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite, Water Res. 37 (2003) 2875–2882.10.1016/S0043-1354(03)00119-2
  • W. Tang, Z. Peng, L. Li, T. Yue, J. Wang, Z. Li, R. Li, J. Chen, V.L. Colvin, W.W. Yu, Porous stainless steel supported magnetite crystalline membranes for hexavalent chromium removal from aqueous solutions, J. Membr. Sci. 392–393 (2012) 150–156.10.1016/j.memsci.2011.12.013
  • Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials 23 (2002) 1553–1561.10.1016/S0142-9612(01)00267-8
  • C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin, Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964–967.10.1126/science.1131475
  • X.Q. Xu, H. Shen, J.R. Xu, J. Xu, X.J. Li, X.M. Xiong, Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran, Appl. Surf. Sci. 252 (2005) 494–500.10.1016/j.apsusc.2005.01.027
  • E. Khor, L.Y. Lim, Implantable applications of chitin and chitosan, Biomaterials 24 (2003) 2339–2349.10.1016/S0142-9612(03)00026-7
  • T.T. Dung, T.M. Danh, L.T.M. Hoa, D.M. Chien, N.H. Duc, Structural and magnetic properties of starch-coated magnetite nanoparticles, J. Exp. Nanosci. 4 (2009) 259–267.10.1080/17458080802570609
  • A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials 26 (2005) 3995–4021.10.1016/j.biomaterials.2004.10.012
  • S. Alibeigi, M.R. Vaezi, Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+, Chem. Eng. Technol. 31 (2008) 1591–1596.10.1002/ceat.v31:11
  • H. Kazemzadeh, A. Ataie, Synthesis of magnetite nano-particles by reverse, Int. J. Mod. Phys. 5 (2012) 160–167.
  • H. Aono, H. Hirazawa, T. Naohara, T. Maehara, H. Kikkawa, Y. Watanabe, Synthesis of fine magnetite powder using reverse coprecipitation method and its heating properties by applying AC magnetic field, Mater. Res. Bull. 40 (2005) 1126–1135.10.1016/j.materresbull.2005.03.014
  • V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling—An overview, RSC Adv. 2 (2012) 6380–6388.10.1039/c2ra20340e
  • S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan, V.L. Colvin, M.B. Tomson, Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate, J. Mater. Res. 20 (2005) 3255–3264.10.1557/jmr.2005.0403
  • J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res. 39 (2005) 4528–4536.10.1016/j.watres.2005.05.051
  • P. Wang, I.M.C. Lo, Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water, Water Res. 43 (2009) 3727–3734.10.1016/j.watres.2009.05.041
  • A.K. Bajpai, S. Likhitkar, Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles, Bull. Mater. Sci. 36 (2013) 15–24.10.1007/s12034-013-0432-9
  • A.K. Bajpai, J. Shrivastava, In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose, Polym. Int. 54 (2005) 1524–1536.10.1002/(ISSN)1097-0126
  • D.K. Kim, M. Mikhaylova, F.H. Wang, J. Kehr, B. Bjelke, Y. Zhang, T. Tsakalakos, M. Muhammed, Starch-coated superparamagnetic nanoparticles as MR contrast agents, Chem. Mater. 15 (2003) 4343–4351.10.1021/cm031104m
  • Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol. 68 (2009) 312–319.10.1016/j.seppur.2009.05.020
  • T. Dey, C.J.O. Connor, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Sep. Purif. Technol. 2 (2005) 13–16.
  • S.K. Janardhanan, I. Ramasamy, B.U. Nair, Synthesis of iron oxide nanoparticles using chitosan and starch templates, Transition Met. Chem. 33 (2008) 127–131.10.1007/s11243-007-9033-z
  • A. Taubert, G. Wegner, Formation of uniform and monodisperse zincite crystals in the presence of soluble starch, J. Mater. Chem. 12 (2002) 805–807.10.1039/b110424c
  • Q. Liang, D. Zhao, T. Qian, K. Freeland, Y. Feng, Effects of stabilizers and water chemistry on arsenate sorption by polysaccharide-stabilized magnetite nanoparticles, Ind. Eng. Chem. Res. 51 (2012) 2407–2418.10.1021/ie201801d
  • J.S. Jiang, Z.F. Gan, Y. Yang, B. Du, M. Qian, P. Zhang, A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide, J. Nanopart. Res. 11 (2009) 1321–1330.10.1007/s11051-008-9534-5
  • Y.M. Soshnikova, S.G. Roman, N.A. Chebotareva, O.I. Baum, M.V. Obrezkova, R.B. Gillis, S.E. Harding, E.N. Sobol, V.V. Lunin, Starch-modified magnetite nanoparticles for impregnation into cartilage, J. Nanopart. Res. 15 (2013) 2092–2102.10.1007/s11051-013-2092-5
  • Z.L. Liu, Y.J. Liu, K.L. Yao, Z.H. Ding, J. Tao, X. Wang, Synthesis and magnetic properties of Fe3O4 nanoparticles, J. Mater. Synth. Process. 10 (2002) 83–87.10.1023/A:1021231527095
  • V.S. Zaitsev, D.S. Filimonov, I.A. Presnyakov, R.J. Gambino, B. Chu, Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions, J. Colloid. Interface Sci. 212 (1999) 49–57.10.1006/jcis.1998.5993
  • D.H. Chen, M.H. Liao, Preparation and characterization of YADH-bound magnetic nanoparticles, J. Mol. Catal. B: Enzym. 16 (2002) 283–291.10.1016/S1381-1177(01)00074-1
  • A.M.G.C. Dias, A. Hussain, A.S. Marcos, A.C.A. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides, Biotechnol. Adv. 29 (2011) 142–155.10.1016/j.biotechadv.2010.10.003
  • J.C. Bacri, R. Perzynski, D. Salin, Ionic ferrofluids: A crossing of chemistry and physics, J. Magn. Magn. Mater. 85 (1990) 27–32.10.1016/0304-8853(90)90010-N
  • T. Mahmood, M.T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, A. Alum, Comparison of different methods for the point of zero charge determination of NiO, Ind. Eng. Chem. Res. 50 (2011) 10017–10023.10.1021/ie200271d
  • M. Kosmulski, pH-dependent surface charging and points of zero charge, J. Colloid Interface Sci. 298 (2006) 730–741.10.1016/j.jcis.2006.01.003
  • Y.C. Chang, D.H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci. 283 (2005) 446–451.10.1016/j.jcis.2004.09.010
  • M.P. Candela, J.M.M. Martinez, R.T. Macia, Chromium(VI) removal with activated carbons, Water Res. 29 (1995) 2174–2180.10.1016/0043-1354(95)00035-J
  • S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite–magnetite nanoparticles, J. Hazard. Mater. 235–236 (2012) 246–256.10.1016/j.jhazmat.2012.07.054
  • Y. Li, B. Gao, T. Wu, D. Sun, X. Li, B. Wang, F. Lu, Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide, Water Res. 43 (2009) 3067–3075.10.1016/j.watres.2009.04.008
  • A. Mittal, J. Mittal, A. Malviya, D. Kaur, V.K. Gupta, Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents, J. Colloid Interface Sci. 342 (2010) 518–527.10.1016/j.jcis.2009.10.046
  • T.M. Do, Y.J. Suh, Removal of aqueous Cr(VI) using magnetite nanoparticles synthesized from a low grade iron ore, Par. Aerosol Res. 9 (2013) 221–230.10.11629/jpaar.
  • P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J.X. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater. 173 (2010) 614–621.10.1016/j.jhazmat.2009.08.129
  • J. Hu, I.M.C. Lo, G. Chen, Removal of Cr(VI) by magnetite nanoparticle, Water Sci. Technol. 50 (2004) 139–146.
  • G.H. Pino, L.M.S. de Mesquita, M.L. Torem, Biosorption of heavy metals by powder of green coconut shell, Sep. Sci. Technol. 41 (2006) 3141–3153.10.1080/01496390600851640
  • S.S. Banerjee, M.V. Joshi, R.V. Jayaram, Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash, Sep. Sci. Technol. 39 (2004) 1611–1629.
  • N.R. Bishnoi, M. Bajaj, N. Sharma, A. Gupta, Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91 (2004) 305–307.10.1016/S0960-8524(03)00204-9
  • M. Nameni, M.R. Alavi Moghadam, M. Arami, Adsorption of hexavalent chromium from aqueous solutions by wheat bran, Int. J. Environ. Sci. Technol. 5 (2008) 161–168.10.1007/BF03326009
  • N.R. Bishnoi, M. Bajaj, N. Sharma, A. Gupta, Adsorption of Cr(VI) on activated rice husk carbon and activated alumina, Bioresour. Technol. 91 (2004) 305–307.10.1016/S0960-8524(03)00204-9
  • M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics, J. Hazard. Mater. 141 (2006) 77–85.
  • S.S. Baral, S.N. Das, P. Rath, Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust, Biochem. Eng. J. 31 (2006) 216–222.10.1016/j.bej.2006.08.003
  • S.R. Chowdhury, E.K. Yanful, A.R. Pratt, Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite–magnetite nanoparticles, J. Hazard. Mater. 235–236 (2012) 246–256.10.1016/j.jhazmat.2012.07.054
  • J. Hu, I.M.C. Lo, G. Chen, Removal of Cr(VI) by magnetite nanoparticle, Water Sci. Technol. 50 (2004) 139–146.
  • T.N.D. Dantas, A.A.D. Neto, M.C.P. Moura, Removal of chromium from aqueous solutions by diatomite treated with microemulsion, Water Res. 35 (2001) 2219–2224.10.1016/S0043-1354(00)00507-8
  • C.H. Weng, J.H. Wang, C.P. Huang, Adsorption of cr(vi) onto tio from dilute aqueous solutions, Water Sci. Technol. 35 (1997) 55–62.10.1016/S0273-1223(97)00114-5
  • B. Sandhya, A.K. Tonnin, Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere 54 (2004) 951–967.
  • F.N. Acar, E. Malkoc, The removal of chromium(VI) from aqueous solutions by Fagus orientalis L., Bioresour. Technol. 94 (2004) 13–15.10.1016/j.biortech.2003.10.032
  • H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater. 186 (2011) 458–465.10.1016/j.jhazmat.2010.11.029
  • A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Adsorptive removal of hazardous anionic dye ‘‘Congo red” from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci. 340 (2009) 16–26.10.1016/j.jcis.2009.08.019
  • D. Zhang, Y. Ma, H. Feng, Y. Hao, Adsorption of Cr(VI) from aqueous solution using carbon-microsilica composite adsorbent, J. Chil. Chem. Soc. 57 (2012) 964–968.10.4067/S0717-97072012000100002
  • M. Doğan, M. Alkan, Adsorption kinetics of methyl violet onto perlite, Chemosphere 50 (2003) 517–528.10.1016/S0045-6535(02)00629-X
  • E. Malkoc, Y. Nuhoglu, Potential of tea factory waste for chromium(VI) removal from aqueous solutions: Thermodynamic and kinetic studies, Sep. Purif. Technol. 54 (2007) 291–298.10.1016/j.seppur.2006.09.017
  • W.B. Zhang, M. Deng, C.X. Sun, S.B. Wang, Ultrasound-enhanced adsorption of chromium(VI) on Fe3O4 magnetic particles, Ind. Eng. Chem. Res. 53 (2014) 333–339.10.1021/ie401497k
  • Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70 (1998) 115–124.10.1016/S0923-0467(98)00076-1
  • J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res. 39 (2005) 4528–4536.10.1016/j.watres.2005.05.051
  • M.R. Lasheen, I.Y. El-Sherif, D.Y. Sabry, S.T. El-Wakeel, M.F. El-Shahat, Removal and recovery of Cr(VI) by magnetite nanoparticles, Desalin. Water Treat. 52 (2014) 6464–6473.10.1080/19443994.2013.822158
  • J. Hu, I.M.C. Lo, G. Chen, Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles, Langmuir 21 (2005) 11173–11179.10.1021/la051076h
  • A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials, J. Colloid Interface Sci. 344 (2010) 497–507.10.1016/j.jcis.2010.01.007
  • T. Fan, Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou, Z. Tan, X. Wang, Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics, J. Hazard. Mater. 160 (2008) 655–661.10.1016/j.jhazmat.2008.03.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.