45
Views
31
CrossRef citations to date
0
Altmetric
Articles

Adsorption of Pb(II) and Hg(II) ions from aqueous single metal solutions by using surfactant-modified ostrich bone waste

, , &
Pages 16522-16539 | Received 09 Dec 2014, Accepted 25 Jul 2015, Published online: 24 Aug 2015

References

  • M.J. Amiri, S.S. Eslamian, Investigation of climate change in Iran, J. Environ. Sci. Technol. 3 (2010) 208–216.
  • S.F. Mousavi, M.J. Amiri, Modeling nitrate concentration of groundwater using adaptive neural-based fuzzy inference system, Soil Water Res. 7 (2012) 73–83.
  • N. Roostaei, River Basin Challenges and Management in Iran, Department of Environment, Soil and Water Pollution and Waste Bureau, Tehran, Iran, 2004.
  • Available from: http://www.atsdr.cdc.gov.
  • Lead Poisoning. Available from: http://www.nsc.org/library/facts/lead.htm, September 1, 2007.
  • The Council of the European Communities, Directive 82/176/ECC-on pollution caused by certain dangerous substances discharged into the aquatic environment of the community [76/464/EEC], Off. J. Eur. Commun., No. L 129/23, 1976.
  • A. Sari, M. Tuzen, Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass, equilibrium, thermodynamic and kinetic studies, J. Hazard. Mater. 171 (2009) 500–507.10.1016/j.jhazmat.2009.06.023
  • F. Di Natale, A. Lancia, A. Molino, M. Di Natale, D. Karatza, D. Musmarra, Capture of mercury ions by natural and industrial materials, J. Hazard. Mater. 132 (2006) 220–225.10.1016/j.jhazmat.2005.09.046
  • F.T. Li, X. Li, B.R. Zhang, Q.H. Ouyang, Removal of heavy metals in effluent by adsorption and coagulation, Chin. Chem. Lett. 15 (2004) 83–86.
  • K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, J. Hazard. Mater. 127 (2005) 89–101.10.1016/j.jhazmat.2005.06.027
  • O.P. Sahu, P.K. Chaudhari, Electrochemical treatment of sugar industry wastewater: COD and color removal, J. Electroanal. Chem. 739 (2015) 122–129.10.1016/j.jelechem.2014.11.037
  • O.J. Esalah, M.E. Weber, J.H. Vera, Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate, Can. J. Chem. Eng. 78 (2000) 948–954.10.1002/(ISSN)1939-019X
  • A. Oehmen, R. Viegas, S. Velizarov, M.A.M. Reis, J.G. Crespo, Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor, Desalination 199 (2006) 405–407.10.1016/j.desal.2006.03.091
  • H.A. Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: A comparative study, Desalination 164 (2004) 105–110.10.1016/S0011-9164(04)00169-9
  • M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Water Resour. Ind. 6 (2014) 1–17.10.1016/j.wri.2014.06.001
  • M. Boroumand Jazi, M. Arshadi, M.J. Amiri, A. Gil, Kinetic and thermodynamic investigations of Pb(II) and Cd(II) adsorptionon nanoscale organo-functionalized SiO2Al2O3, J. Colloid Interface Sci. 422 (2014) 16–24.10.1016/j.jcis.2014.01.032
  • M.D. Ranganayaki, T.S. Srinivasan, Hygienic processing and utilization of animal by-products, in: Souvenir cum Proceedings of National Seminar on Processing of Meat, Poultry and By-products for Value Addition, February 24–26, CFTRI, Mysore, 1999, pp. 187–195.
  • C. Cheung, J. Porter, G. McKay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res. 35 (2001) 605–612.10.1016/S0043-1354(00)00306-7
  • C. Cheung, J. Porter, G. McKay, Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation, Langmuir 18 (2002) 650–656.10.1021/la010706m
  • S.S.M. Hassan, N.S. Awwad, A.H.A. Aboterika, Removal of mercury(II) from wastewater using camel bone charcoal, J. Hazard. Mater 154 (2008) 992–997.10.1016/j.jhazmat.2007.11.003
  • K. Chojnacka, Equilibrium and kinetic modelling of chromium(III) sorption by animal bones, Chemosphere 59 (2005) 315–320.10.1016/j.chemosphere.2004.10.052
  • X. Pan, J. Wang, D. Zhang, Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism, Desalination 249 (2009) 609–614.10.1016/j.desal.2009.01.027
  • B. Kizilkaya, A.A. Tekinay, Y. Dilgin, Adsorption and removal of Cu(II) ions from aqueous solution using pretreated fish bones, Desalination 264 (2010) 37–47.10.1016/j.desal.2010.06.076
  • M.J. Amiri, J. Abedi-Koupai, S.S. Eslamian, S.F. Mousavi, H. Hasheminejad, Modeling Pb(II) adsorption from aqueous solution by ostrich bone ash using adaptive neural-based fuzzy inference system, J. Environ. Sci. Health, Part A 48 (2013) 543–558.10.1080/10934529.2013.730451
  • M.J. Amiri, J. Abedi-Koupai, S.S. Eslamian, S.F. Mousavi, M. Arshadi, Modelling Pb(II) adsorption based on synthetic and industrial wastewaters by ostrich bone char using artificial neural network and multivariate non-linear regression, Int. J. Hydrol. Sci. Technol. 3 (2013) 221–240.10.1504/IJHST.2013.058313
  • Available from: <http://www.worldrecordacademy.com>.
  • L.S. Balistrieri, J.W. Murray, The surface chemistry of goethite (alpha FeOOH) in major ion seawater, Am. J. Sci. 281 (1981) 788–806.10.2475/ajs.281.6.788
  • R. Cason, W.R. Lester, Chemistry of two clay systems and three phenoxy herbicides, Proc. Okla. Acad. Sci. 57 (1977) 116–118.
  • M.F. Skinner, D. Zabowski, R. Harrison, A. Lowe, D. Xue, Measuring the cation exchange capacity of forest soils, Commun. Soil Sci. Plant Anal. 32 (2001) 1751–1764.10.1081/CSS-120000247
  • S. Al-Asheh, F. Banat, F. Mohai, Sorption of copper and nickel by spent animal bones, Chemosphere 39 (1999) 2087–2096.10.1016/S0045-6535(99)00098-3
  • S. Dimović, I. Smičiklas, M.Z. Šljivić-Ivanović, I.B. Plećaš, L. Slavković-Beškoski, The effect of process parameters on kinetics and mechanisms of Co2+ removal by bone char, J. Environ. Sci. Health, Part A 46 (2011) 1558–1569.10.1080/10934529.2011.609454
  • S. Dimović, I. Smičiklas, I. Plećaš, D. Antonović, M. Mitrić, Comparative study of differently treated animal bones for Co2+ removal, J. Hazard. Mater. 164 (2009) 279–287.10.1016/j.jhazmat.2008.08.013
  • M. Nadeem, M. Shabbir, M.A. Abdullah, S.S. Shah, G. McKay, Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents, Chem. Eng. J. 148 (2009) 365–370.10.1016/j.cej.2008.09.010
  • Z. Li, R.S. Bowman, Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite, Environ. Sci. Technol. 31 (1997) 2407–2412.10.1021/es9610693
  • Z. Li, Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite, Langmuir 15 (1999) 6438–6445.10.1021/la981535x
  • Z. Li, C.A. Willms, K. Kniola, Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite, Clays Clay Miner. 51 (2003) 445–451.10.1346/CCMN.2003.0510411
  • P. Sun, Z.T. Liu, Z.W. Li, Particles from bird feather: A novel application of an ionic liquid and waste resource, J. Hazard. Mater. 170 (2009) 786–790.
  • F. Peters, K. Schwarz, M. Epple, The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis, Thermochim. Acta 361 (2000) 131–138.
  • E. Wojciechowska, A. Włochowicz, A. Wesełucha-Birczyńska, Application of Fourier-transform infrared and Raman spectroscopy to study degradation of the wool fiber keratin, J. Mol. Struct. 511–512 (1999) 307–318.10.1016/S0022-2860(99)00173-8
  • W. Akhtar, H.G.M. Edwards, D.W. Farwell, M. Nutbrown, Fourier-transform Raman spectroscopic study of human hair, Spectrochim. Acta, Part A 53 (1997) 1021–1031.10.1016/S1386-1425(97)00055-3
  • A.T. Tu, R.J.H. Clark, R.R. Hester, Spectroscopy of Biological Systems, Wiley, New York, NY, 1986, p. 47.
  • T.R. Macedo, C. Airoldi, Distinct features of organosilyl-grafted pendant groups attached in the RUB-18 interlayer space, Dalton Trans. 36 (2009) 7402–7409.10.1039/b908857a
  • B. Royer, N.F. Cardoso, E.C. Lima, T.R. Macedo, C. Airoldi, A useful organofunctionalized layered silicate for textile dye removal, J. Hazard. Mater. 181 (2010) 366–374.10.1016/j.jhazmat.2010.05.019
  • X.Y. Wang, Y. Zuo, D. Huang, X.D. Hou, Y.B. Li, Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone, Biomed. Environ. Sci. 23 (2010) 473–480.10.1016/S0895-3988(11)60010-X
  • H.C. Evans, Fiber swelling and detergent adsorption in detergent/textile fiber systems, J. Colloid Sci. 13 (1958) 537–552.10.1016/0095-8522(58)90065-5
  • E. Deydier, R. Guilet, S. Sarda, P. Sharrock, Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”, J. Hazard. Mater. 121 (2005) 141–148.10.1016/j.jhazmat.2005.02.003
  • M. Coutand, E. Deydier, M. Cyr, F. Mouchet, L. Gauthier, R. Guilet, L.B. Savaete, S. Cren, P. Clastres, Evaluation of laboratory and industrial meat and bone meal combustion residue as cadmium immobilizing material for remediation of polluted aqueous solutions: “Chemical and ecotoxicological studies”, J. Hazard. Mater. 166 (2009) 945–953.10.1016/j.jhazmat.2008.11.104
  • M. Arshadi, M. Ghiaci, A. Gil, Schiff base ligands immobilized on a nanosized SiO2–Al2O3 mixed oxide as adsorbents for heavy metals, Ind. Eng. Chem. Res. 50 (2011) 13628–13635.10.1021/ie2015153
  • L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J. 165 (2010) 827–834.10.1016/j.cej.2010.10.027
  • E. Deydier, R. Guilet, P. Sharrock, Beneficial use of meat and bone meal combustion residue: “an efficient low cost material to remove lead from aqueous effluent”, J. Hazard. Mater. 101 (2003) 55–64.10.1016/S0304-3894(03)00137-7
  • R.C. Bansal, Activated Carbon Adsorption, CRC Press, Boca Raton, FL, 2005.10.1201/9781420028812
  • M. Arshadi, M. Mehravar, M.J. Amiri, A.R. Faraji, Synthesis and adsorption characteristics of an heterogenized manganese nanoadsorbent towards methyl orange, J. Colloid Interface Sci. 440 (2015) 189–197.10.1016/j.jcis.2014.10.053
  • M. Horsfall Jnr, A.I. Spiff, Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass, Electron. J. Biotechnol. 8 (2008) 162–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.