221
Views
15
CrossRef citations to date
0
Altmetric
Articles

Study on the mechanism of cerium oxide catalytic ozonation for controlling the formation of bromate in drinking water

, , , , &
Pages 15533-15546 | Received 31 Mar 2015, Accepted 10 Jul 2015, Published online: 14 Aug 2015

References

  • U. von Gunten, Ozonation of drinking water: Part I. oxidation kinetics and product formation, Water Res. 37(2003) 1443–1467.10.1016/S0043-1354(02)00457-8
  • J. Nawrocki, B.K. Hordern, The efficiency and mechanisms of catalytic ozonation, Appl. Catal., B 99 (2010) 27–42.10.1016/j.apcatb.2010.06.033
  • S.D. Richardson, T.A. Ternes, Water analysis: Emerging contaminants and current issues, Anal. Chem. 83 (2011) 4614–4648.10.1021/ac200915r
  • F. Qi, B. Xu, Z. Chen, L. Feng, L. Zhang, D. Sun, Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3: Comparison of removal efficiency and mechanism, Chem. Eng. J. 219 (2013) 527–536.10.1016/j.cej.2013.01.035
  • T. Zhang, J. Ma, Catalytic ozonation of trace nitrobenzene in water with synthetic goethite, J. Mol. Catal. A: Chem. 279 (2008) 82–89.10.1016/j.molcata.2007.09.030
  • F.J. Beltrán, F.J. Rivas, R.M. de Espinosa, A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water, Appl. Catal., B 47 (2004) 101–109.10.1016/j.apcatb.2003.07.007
  • R. Rosal, A. Rodríguez, M.S. Gonzalo, E.G. Calvo, Catalytic ozonation of naproxen and carbamazepine on titanium dioxide, Appl. Catal., B 84 (2008) 48–57.10.1016/j.apcatb.2008.03.003
  • Y. Kurokawa, Y. Hayashi, A. Maekawa, M. Takahashi, S. Odashima, Carcinogenicity of potassium bromate administered orally to F334 rats, J. Natl. Cancer Inst. 71 (1983) 965–972.
  • T.P. Bonacquisti, A drinking water utility’s perspective on bromide, bromate, and ozonation, Toxicology 221 (2006) 145–148.10.1016/j.tox.2006.02.010
  • U. von Gunten, Y. Oliveras, Advanced oxidation of bromide-containing waters: Bromate formation mechanisms, Environ. Sci. Technol. 32 (1998) 63–70.10.1021/es970477j
  • U. Pinkernell, U. von Gunten, Bromate minimization during ozonation: Mechanistic considerations, Environ. Sci. Technol. 35 (2001) 2525–2531.10.1021/es001502f
  • M.O. Buffle, S. Galli, U. von Gunten, Enhanced bromate control during ozonation: The chlorine-ammonia process, Environ. Sci. Technol. 38 (2004) 5187–5195.10.1021/es0352146
  • Y.L. Nie, C. Hu, L. Yang, J.C. Hu, Inhibition mechanism of BrO3− formation over MnOx/Al2O3 during the catalytic ozonation of 2,4-dichlorophenoxyacetic acid in water, Sep. Purif. Technol. 117 (2013) 41–45.10.1016/j.seppur.2013.03.045
  • Y.L. Nie, C. Hu, N.N. Li, L. Yang, J.H. Qu, Inhibition of bromate formation by surface reduction in catalytic ozonation of organic pollutants over β-FeOOH/Al2O3, Appl. Catal., B 147 (2014) 287–292.10.1016/j.apcatb.2013.09.005
  • H.W. Yang, S.X. Yang, L. Wu, W.J. L, CexZr1−xO2 mixed oxides applied to minimize the bromate formation in the catalytic ozonation of a filtered water, Catal. Commun. 15 (2011) 99–102.10.1016/j.catcom.2011.08.032
  • T. Zhang, W.P. Chen, J. Ma, Z. Qiang, Minimizing bromate formation with cerium dioxide during ozonation of bromide-containing water, Water Res. 42 (2008a) 3651–3658.10.1016/j.watres.2008.05.021
  • K. Kandori, M. Fukuoka, T. Ishikawa, Effects of citrate ions on the formation of ferric oxide hydroxide particles, J. Mater. Sci. 26 (1991) 3313–3319.10.1007/BF01124679
  • S. Morales, R. Cela, Highly selective and efficient determination of US environmental protection agency priority phenols employing solid-phase extraction and non-aqueous capillary electrophoresis, J. Chromatogr. A 896 (2000) 95–104.10.1016/S0021-9673(00)00581-1
  • R. Cousin, E.A. Aad, S. Capelle, D. Courcot, J.F. Lamonier, A. Aboukaïs, Physico-chemical study of impregnated Cu and V species on CeO2 support by thermal analysis, XRD, EPR, 51V-MAS-NMR and XPS, J. Mater. Sci. 42 (2007) 6188–6196.10.1007/s10853-006-1165-6
  • T. Zhang, P. Hou, Z.M. Qiang, X.W. Lu, Q.H. Wang, Reducing bromate formation with H+-form high silica zeolites during ozonation of bromide-containing water: Effectiveness and mechanisms, Chemosphere 82 (2011) 608–612.10.1016/j.chemosphere.2010.10.078
  • U. von Gunten, J. Hoigne, Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical reactions, Environ. Sci. Technol. 28 (1994) 1234–1242.10.1021/es00056a009
  • U. von Gunten, Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water. Res. 37(2003) 1469–1487.10.1016/S0043-1354(02)00458-X
  • K. Ozekin, P. Westerhoff, G. Amy, M. Siddiqui, Molecular ozone and radical pathways of bromate formation during ozonation, J. Environ. Eng-ASCE 124 (1998) 456–462.10.1061/(ASCE)0733-9372(1998)124:5(456)
  • W.R. Haag, J. Hoigne, Ozonation of bromide-containing waters: Kinetics of formation of hypobromous acid and bromate, Environ. Sci. Technol. 17 (1983) 261–267.10.1021/es00111a004
  • M.M. Ye, Z.L. Chen, J.M. Shen, Y. Ben, Z.Z. Xu, Synthesis of lanthanum oxide and cerium oxide and ozonation catalytic activities of p-chloronitrobenzene, J. Harbin Inst. Tech. 41 (2009) 77–80.
  • T. Zhang, C.J. Li, J. Ma, H. Tian, Z.M. Qiang, Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: Property and activity relationship, Appl. Catal., B 82 (2008b) 131–137.10.1016/j.apcatb.2008.01.008
  • K. He, Y.M. Dong, Z. Li, L. Yin, A.M. Zhang, Y.C. Zheng, Catalytic ozonation of phenol in water with natural brucite and magnesia, J. Hazard. Mater. 159 (2008) 587–592.10.1016/j.jhazmat.2008.02.061
  • J. Staehelin, J. Hoigne, Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol. 16 (1982) 676–681.10.1021/es00104a009
  • K.M. Bulanin, J.C. Lavalley, A.A. Tsyganenko, IR spectra of adsorbed ozone, Colloids Surf., A 101 (1995) 153–158.10.1016/0927-7757(95)03130-6
  • A. Trovarelli, Structural and oxygen storage/release properties of CeO2-based solid solutions, Comments Inorg. Chem. 20 (1999) 263–284.10.1080/02603599908021446
  • M.F. Pinheiro da Silva, L.S. Soeira, K.R.P. Daghastanli, T.S. Martins, I.M. Cuccovia, R.S. Freire, P.C. Isolani, CeO2-catalyzed ozonation of phenol: The role of cerium citrate as precursor of CeO2, J. Therm. Anal. Calorim. 102 (2010) 907–913.10.1007/s10973-010-0898-2
  • W.W. Li, Z.M. Qiang, T. Zhang, F.L. Cao, Kinetics and mechanism of pyruvic acid degradation by ozone in the presence of PdO/CeO2, Appl. Catal., B 113–114 (2012) 290–295.10.1016/j.apcatb.2011.11.049
  • K.M. Bulanin, J.C. Lavalley, J. Lamotte, L. Mariey, N.M. Tsyganenko, A.A. Tsyganenko, Infrared study of ozone adsorption on CeO2, J. Phys. Chem. B 102 (1998) 6809–6816.10.1021/jp981387j
  • K. Matsunaga, M. Imanaka, K. Kenmotsu, J. Oda, S. Hino, M. Kadota, H. Fujiwara, T. Mori, Superoxide radical-induced degradation of polychlorlbiphenyls and chlordanes at low temperature, Bull. Environ. Contam. Toxicol. 46 (1991) 292–299.10.1007/BF01691951
  • S.F. Wong, B. Halliwell, R. Richmond, W.R. Skowroneck, The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid, J. Inorg. Biochem. 14 (1981) 127–134.10.1016/S0162-0134(00)80033-1
  • D. Peak, R.G. Ford, D.L. Sparks, An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite, J. Colloid Interface Sci. 218 (1999) 289–299.10.1006/jcis.1999.6405
  • X.D. Zhu, M.A. Nanny, E.C. Butler, Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite, J. Photochem. Photobiol., A 185 (2007) 289–294.10.1016/j.jphotochem.2006.06.023
  • P. Neta, R.R. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data 17 (1988) 1027–1262.10.1063/1.555808
  • J.D. Laat, G. Truong Le, B. Legube, A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2, Chemosphere 55 (2004) 715–723.10.1016/j.chemosphere.2003.11.021
  • J.Z. Gao, Y.L. Qi, W. Yang, X.J. Guo, S.Y. Li, X.E. Li, Shape control of CeO2 nano-particles and synthesis of nano-metric solid acid SO42-/CeO2, Mater. Chem. Phys. 82 (2003) 602–607.10.1016/S0254-0584(03)00320-1
  • Y.M. Choi, H. Abernathy, H.T. Chen, M.C. Lin, M. Liu, Characterization of O2-CeO2 interactions using in situ Raman spectroscopy and first-principle calculations, Chemphyschem 7 (2006) 2006.
  • M. Waqif, P. Bazin, O. Saur, J.C. Lavalley, G. Blanchard, O. Touret, Study of ceria sulfation, Appl. Catal., B 11 (1997) 193–205.10.1016/S0926-3373(96)00040-9
  • C.T. Campbell, C.H.F. Peden, Chemistry: Oxygen vacancies and catalysis on ceria surfaces, Science 309 (2005) 713–714.10.1126/science.1113955
  • A.T. D'Agostino, Determination of thin metal film thickness by X-ray diffractometry using the Scherrer equation, atomic absorption analysis and transmission/reflection visible spectroscopy, Anal. Chim. Acta 262 (1992) 269–275.10.1016/0003-2670(92)80064-E
  • X.C. Li, R.Z. Gong, Z.K. Feng, J.B. Yan, X. Shen, H.H. He, Effect of particle size and concentration on microwave-absorbing properties of CuxCo2-xY (x = 0, 1) hexaferrite composites, J. Am. Ceram. Soc. 89 (2006) 1450–1452.10.1111/jace.2006.89.issue-4
  • A. Bielanski, J. Haber, Oxygen in Catalysis, Mareel Dekker Inc, New York, NY, 1991.
  • Y. Mei, J.P. Yan, Z.R. Nie, XPS study on the influence of calcination conditions to cerium ion valence, Spectrosc. Spect. Anal. 30 (2010) 270–273.
  • A. Pfau, K.D. Schierbaum, The electronic structure of stoichiometric and reduced CeO2 surfaces: An XPS, UPS and HREELS study, Surf. Sci. 321 (1994) 71–80.10.1016/0039-6028(94)90027-2
  • H.T. Chen, J.G. Chang, H.L. Chen, S.P. Ju, Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: A DFT + U study, J. Comput. Chem. 30 (2009) 2433–2442.10.1002/jcc.v30:15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.