76
Views
38
CrossRef citations to date
0
Altmetric
Articles

Types of bulk liquid membrane and its membrane resistance in heavy metal removal and recovery from wastewater

Pages 19785-19793 | Received 09 Mar 2015, Accepted 23 Sep 2015, Published online: 16 Oct 2015

References

  • J.G. Wijmans, R.W. Baker, The solution-diffusion model: A review, J. Membr. Sci. 107 (1995) 1–21.10.1016/0376-7388(95)00102-I
  • M.F. San Román, E. Bringas, R. Ibañez, I. Ortiz, Liquid membrane technology: Fundamentals and review of its applications, J. Chem. Technol. Biotechnol. 85 (2009) 2–10.
  • W.J.V. Osterhout, How do electrolytes enter the cell? Proc. Nat. Acad. Sci. 21 (1935) 125–132.10.1073/pnas.21.2.125
  • W.J. Ward, W.L. Robb, Carbon dioxide-oxygen separation: Facilitated transport of carbon dioxide across a liquid film, Science 156 (1967) 1481–1484.10.1126/science.156.3781.1481
  • N.N. Li, Separating Hydrocarbons with Liquid Membranes, United States Patent 3,410,794, 1968, Nov. 12.
  • E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, second ed., Cambridge University Press, Cambridge, 1997.
  • S.H. Chang, Vegetable oil as organic solvent for wastewater treatment in liquid membrane processes, Desalin. Water Treat. 52 (2014) 88–101.10.1080/19443994.2013.782829
  • P.K. Parhi, Supported liquid membrane principle and its practices: A short review, J. Chem. 2013 (2013) 1–11.10.1155/2013/618236
  • A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization, Chem. Eng. J. 171 (2011) 870–882.10.1016/j.cej.2011.05.102
  • A.K. Pabby, A.M. Sastre, State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes, J. Membr. Sci. 430 (2013) 263–303.10.1016/j.memsci.2012.11.060
  • S.H. Chang, T.T. Teng, I. Norli, Cu(II) transport through soybean oil-based bulk liquid membrane: Kinetic study, Chem. Eng. J. 173 (2011) 352–360.10.1016/j.cej.2011.07.062
  • S.H. Chang, T.T. Teng, N. Ismail, A.F.M. Alkarkhi, Selection of design parameters and optimization of operating parameters of soybean oil-based bulk liquid membrane for Cu(II) removal and recovery from aqueous solutions, J. Hazard. Mater. 190 (2011) 197–204.10.1016/j.jhazmat.2011.03.025
  • G. Muthuraman, T.T. Teng, C.P. Leh, I. Norli, Use of bulk liquid membrane for the removal of chromium(VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier, Desalination 249 (2009) 884–890.10.1016/j.desal.2009.09.008
  • I. Akin, S. Erdemir, M. Yilmaz, M. Ersoz, Calix[4]arene derivative bearing imidazole groups as carrier for the transport of palladium by using bulk liquid membrane, J. Hazard. Mater. 223–224 (2012) 24–30.10.1016/j.jhazmat.2012.03.043
  • S. Koter, P. Szczepański, M. Mateescu, G. Nechifor, L. Badalau, I. Koter, Modeling of the cadmium transport through a bulk liquid membrane, Sep. Purif. Technol. 107 (2013) 135–143.10.1016/j.seppur.2013.01.032
  • A.M. Candela, V. Benatti, C. Palet, Pre-concentration of uranium(VI) using bulk liquid and supported liquid membrane systems optimized containing bis(2-ethylhexyl) phosphoric acid as carrier in low concentrations, Sep. Purif. Technol. 120 (2013) 172–179.10.1016/j.seppur.2013.09.047
  • F.T. Minhas, S. Memon, M.I. Bhanger, Transport of Hg(II) through bulk liquid membrane containing calix[4]arene thioalkyl derivative as a carrier, Desalination 262 (2010) 215–220.10.1016/j.desal.2010.06.014
  • N. Dalali, H. Yavarizadeh, Y.K. Agrawal, Separation of zinc and cadmium from nickel and cobalt by facilitated transport through bulk liquid membrane using trioctyl methyl ammonium chloride as carrier, J. Ind. Eng. Chem. 18 (2012) 1001–1005.10.1016/j.jiec.2011.11.151
  • R. Gawroński, P. Religa, Transport mechanism of chromium(III) through the unmixed bulk liquid membrane containing dinonylnaphthalenesulfonic acid as a carrier, J. Membr. Sci. 289 (2007) 187–190.10.1016/j.memsci.2006.11.053
  • K. Chakrabarty, K.V. Krishna, P. Saha, A.K. Ghoshal, Extraction and recovery of lignosulfonate from its aqueous solution using bulk liquid membrane, J. Membr. Sci. 330 (2009) 135–144.10.1016/j.memsci.2008.12.069
  • C. Aydiner, M. Kobya, E. Demirbas, Cyanide ions transport from aqueous solutions by using quaternary ammonium salts through bulk liquid membranes, Desalination 180 (2005) 139–150.10.1016/j.desal.2005.01.003
  • A.Ö. Saf, S. Alpaydin, A. Sirit, Transport kinetics of chromium(VI) ions through a bulk liquid membrane containing p-tert-butyl calix[4]arene 3-morpholino propyl diamide derivative, J. Membr. Sci. 283 (2006) 448–455.10.1016/j.memsci.2006.07.023
  • A. Yilmaz, A. Kaya, H.K. Alpoguz, M. Ersoz, M. Yilmaz, Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxaoctylamide derivative, Sep. Purif. Technol. 59 (2008) 1–8.10.1016/j.seppur.2007.05.017
  • T.R. Reddy, J. Ramkumar, S. Chandramouleeswaran, A.V.R. Reddy, Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier, J. Membr. Sci. 351 (2010) 11–15.10.1016/j.memsci.2010.01.021
  • R. Singh, R. Mehta, V. Kumar, Simultaneous removal of copper, nickel and zinc metal ions using bulk liquid membrane system, Desalination 272 (2011) 170–173.10.1016/j.desal.2011.01.009
  • S. Alpaydin, A.Ö. Saf, S. Bozkurt, A. Sirit, Kinetic study on removal of toxic metal Cr(VI) through a bulk liquid membrane containing p-tert-butylcalix[4]arene derivative, Desalination 275 (2011) 166–171.10.1016/j.desal.2011.02.048
  • A. Nezhadali, Selective transport of Ag(I) ion across a bulk liquid and polymer membranes incorporated with di-N-benzylated O3N2 donor macrocycles, Chin. Chem. Lett. 21 (2010) 1111–1114.10.1016/j.cclet.2010.04.028
  • A.R. Fakhari, A.R. Khorrami, M. Shamsipur, Selective uphill Zn2+ transport via a bulk liquid membrane using an azacrown ether carrier, Sep. Purif. Technol. 50 (2006) 77–81.10.1016/j.seppur.2005.11.011
  • G. León, M.A. Guzmán, Facilitated transport of cobalt through bulk liquid membranes containing diethylhexyl phosphoric acid, Desalination 162 (2004) 211–215.10.1016/S0011-9164(04)00044-X
  • G. León, R. de los Santos, M.A. Guzmán, Reduction of sodium and chloride ion content in aqueous solutions by bulk liquid membranes: A kinetic approach, Desalination 168 (2004) 271–275.10.1016/j.desal.2004.07.008
  • G. León, M.A. Guzmán, Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes, Desalination 184 (2005) 79–87.10.1016/j.desal.2005.03.067
  • G. León, M.A. Guzmán, Facilitated transport of copper through bulk liquid membranes containing different carriers: Compared kinetic study, Desalination 223 (2008) 330–336.10.1016/j.desal.2007.01.216
  • M.R. Yaftian, M. Burgard, A kinetic investigation of a carrier-mediated transport through a bulk liquid membrane, Iran. J. Chem. Chem. Eng. 25 (2006) 17–23.
  • F.N. Memon, S. Memon, F.T. Minhas, Rapid transfer of methyl red using calix[6]arene as a carrier in a bulk liquid membrane, C.R. Chim. 17 (2014) 577–585.10.1016/j.crci.2013.09.015
  • W. Walkowiak, C.A. Kozlowski, Macrocycle carriers for separation of metal ions in liquid membrane processes—A review, Desalination 240 (2009) 186–197.10.1016/j.desal.2007.12.041
  • J.S. Watson, Separation Methods for Waste and Environmental Applications, Marcel Dekker, New York, NY, 1999.
  • D.L. Reger, S.R. Goode, D.W. Ball, Chemistry: Principles and Practice, third ed., Cengage Learning, Canada, 2010.
  • C. Wohlfarth, Viscosity of Pure Organic Liquids and Binary Liquid Mixtures (Landolt-Barnstein: Numerical Data and Functional Relationships in Science and Technology), Springer, Germany, 2009.
  • D.S. Viswanath, T.K. Ghosh, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data, Springer, Netherlands, 2007.
  • P. Norton, Appendices B: Properties of liquids, in: F. Kreith (Ed.), Fluid Mechanics, CRC Press, Florida, 2000, pp. B35–B37.
  • M. Roos, H.-J. Bart, Extraction of acetic acid with tri-n-octylamine: Physical properties and phase equilibria, J. Chem. Eng. Data 46 (2001) 1198–1202.10.1021/je000313+
  • E.L. Cussler, Diffusion, third ed., Cambridge University Press, New York, NY, 2009.10.1017/CBO9780511805134
  • A.P. Sinha, P. De, Mass Transfer: Principles and Operations, PHI Learning, New Delhi, 2012.
  • I.H. Gubbuk, O. Gungor, H.K. Alpoguz, M. Ersoz, M. Yılmaz, Kinetic study of mercury(II) transport through a liquid membrane containing calix[4]arene nitrile derivatives as a carrier in chloroform, Desalination 261 (2010) 157–161.10.1016/j.desal.2010.05.011
  • S.H. Chang, T.T. Teng, N. Ismail, Screening of factors influencing Cu(II) extraction by soybean oil-based organic solvents using fractional factorial design, J. Environ. Manage. 92 (2011) 2580–2585.10.1016/j.jenvman.2011.05.025
  • F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418.10.1016/j.jenvman.2010.11.011
  • T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physico-chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006) 83–98.10.1016/j.cej.2006.01.015
  • W. Zhang, J. Liu, Z. Ren, S. Wang, C. Du, J. Ma, Kinetic study of chromium(VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier, Chem. Eng. J. 150 (2009) 83–89.
  • S. Jafari, M.R. Yaftian, M. Parinejad, Facilitated transport of cadmium as anionic iodo-complexes through bulk liquid membrane containing hexadecyltrimethylammonium bromide, Sep. Purif. Technol. 70 (2009) 118–122.10.1016/j.seppur.2009.09.003
  • T.R. Reddy, N.N. Meeravali, A.V.R. Reddy, Novel reverse mixed micelle mediated transport of platinum and palladium through a bulk liquid membrane from real samples, Sep. Purif. Technol. 103 (2013) 71–77.10.1016/j.seppur.2012.10.025
  • M. Shamsipur, R. Davarkhah, A.R. Khanchi, Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents, Sep. Purif. Technol. 71 (2010) 63–69.10.1016/j.seppur.2009.11.003
  • M. Chakraborty, H.-J. Bart, Highly selective and efficient transport of toluene in bulk ionic liquid membranes containing Ag+ as carrier, Fuel Process. Technol. 88 (2007) 43–49.10.1016/j.fuproc.2006.08.004
  • S.H. Chang, T.T. Teng, N. Ismail, Extraction of Cu(II) from aqueous solutions by vegetable oil-based organic solvents, J. Hazard. Mater. 181 (2010) 868–872.10.1016/j.jhazmat.2010.05.093
  • S.H. Chang, T.T. Teng, N. Ismail, Efficiency, stoichiometry and structural studies of Cu(II) removal from aqueous solutions using di-2-ethylhexylphosphoric acid and tributylphosphate diluted in soybean oil, Chem. Eng. J. 166 (2011) 249–255.10.1016/j.cej.2010.10.069
  • B. Gurkan, B.F. Goodrich, E.M. Mindrup, L.E. Ficke, M. Massel, S. Seo, T.P. Senftle, H. Wu, M.F. Glaser, J.K. Shah, E.J. Maginn, J.F. Brennecke, W.F. Schneider, Molecular design of high capacity, low viscosity, chemically tunable ionic liquids for CO2 capture, J. Phys. Chem. Lett. 1 (2010) 3494–3499.10.1021/jz101533k
  • S.E. McLeese, J.C. Eslick, N.J. Hoffmann, A.M. Scurto, K.V. Camarda, Design of ionic liquids via computational molecular design, Comput. Chem. Eng. 34 (2010) 1476–1480.10.1016/j.compchemeng.2010.02.017
  • S. Park, R.J. Kazlauskas, Biocatalysis in ionic liquids: Advantages beyond green technology, Curr. Opin. Biotechnol. 14(4) (2003) 432–437.10.1016/S0958-1669(03)00100-9
  • E. Cunha, P.C.A.G. Pinto, J.P.S. Carvalho, M.L.M.F.S. Saraiva, Automated carboxylesterase assay for the evaluation of ionic liquids’ human toxicity, J. Hazard. Mater. 244–245 (2013) 563–569.10.1016/j.jhazmat.2012.10.045
  • M. Cvjetko Bubalo, K. Radošević, I. Radojčić Redovniković, J. Halambek, V. Gaurina Srček, A brief overview of the potential environmental hazards of ionic liquids, Ecotoxicol. Environ. Saf.. 99 (2014) 1–12.10.1016/j.ecoenv.2013.10.019
  • C. Zhang, S.V. Malhotra, A.J. Francis, Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption, J. Hazard. Mater. 264 (2014) 246–253.10.1016/j.jhazmat.2013.11.003
  • L.J. Lozano, C. Godínez, A.P. de los Ríos, F.J. Hernández-Fernández, S. Sánchez-Segado, F.J. Alguacil, Recent advances in supported ionic liquid membrane technology, J. Membr. Sci. 376 (2011) 1–14.10.1016/j.memsci.2011.03.036
  • Á. Molina, C. Serna, J.A. Ortuño, E. Torralba, Studies of ion transfer across liquid membranes by electrochemical techniques, Annu. Rep. Sect. “C” (Phys. Chem.) 108 (2012) 126–176.10.1039/c2pc90005j
  • G. León, G. Martínez, M.A. Guzmán, J.I. Moreno, B. Miguel, J.A. Fernández-López, Increasing stability and transport efficiency of supported liquid membranes through a novel ultrasound-assisted preparation method. Its application to cobalt(II) removal, Ultrason. Sonochem. 20 (2013) 650–654.10.1016/j.ultsonch.2012.10.002
  • E. Santos, J. Albo, C.I. Daniel, C.A.M. Portugal, J.G. Crespo, A. Irabien, Permeability modulation of supported magnetic ionic liquid membranes (SMILMs) by an external magnetic field, J. Membr. Sci. 430 (2013) 56–61.10.1016/j.memsci.2012.12.009
  • H. Hamidi, E. Mohammadian, R. Junin, R. Rafati, M. Manan, A. Azdarpour, M. Junid, A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium, Ultrasonics 54 (2014) 655–662.10.1016/j.ultras.2013.09.006
  • R. Tao, H. Tang, Reducing viscosity of paraffin base crude oil with electric field for oil production and transportation, Fuel 118 (2014) 69–72.10.1016/j.fuel.2013.10.056
  • X. Zhang, Going green: Initiatives and technologies in Shanghai World Expo, Renew. Sustain. Energy Rev. 25 (2013) 78–88.10.1016/j.rser.2013.04.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.