222
Views
14
CrossRef citations to date
0
Altmetric
Articles

Experimental screening of some chelating agents for calcium and magnesium removal from saline solutions

, , &
Pages 22799-22808 | Received 24 May 2015, Accepted 19 Oct 2015, Published online: 05 Nov 2015

References

  • T.P. Knepper, Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment, TrAC Trends Anal. Chem. 22(10) (2003) 708–724.10.1016/S0165-9936(03)01008-2
  • B. Nowack, Environmental chemistry of amino polycarboxylate chelating agents, Environ. Sci. Technol. 36(19) (2002) 4009–4016.
  • D. Kołodyńska, Application of a new generation of complexing agents in removal of heavy metal ions from different wastes, Environ. Sci. Pollut. Res. 20(9) (2013) 5939–5949.10.1007/s11356-013-1576-2
  • D. Kołodyńska, H. Hubicka, Polyacrylate anion exchangers in sorption of heavy metal ions with non-biodegradable complexing agents, Chem. Eng. J. 150 (2009) 308–315.10.1016/j.cej.2009.01.003
  • M.E. Malla, M.B. Alvarez, D.A. Batistoni, Evaluation of sorption and desorption characteristics of cadmium, lead and zinc on Amberlite IRC-718 iminodiacetate chelating ion exchanger, Talanta 57 (2002) 277–287.10.1016/S0039-9140(02)00034-6
  • E.G. Kontecka, J. Jezierska, M. Lecouvey, Y. Leroux, H. Kozlowski, Bisphosphonate chelating agents. Coordination ability of 1-phenyl-1-hydroxymethylene bisphosphonate towards (Cu2+) ions, J. Inorg. Biochem. 89 (2002) 13–17.10.1016/S0162-0134(01)00412-3
  • A. Rether, M. Schuster, Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers, React. Funct. Polym. 57 (2003) 13–21.10.1016/j.reactfunctpolym.2003.06.002
  • P.N. Nesterenko, P. Jones, J. Liq, The comparative investigation of several stationary phases containing iminodiacetic functional groups for the high performance chelating exchange chromatography, J. Liq. Chromatogr. Relat. Technol. 19 (1996) 1033–1045.10.1080/10826079608006300
  • P.N. Nesterenko, P. Jones, First isocratic separation of fourteen lanthanides and yttrium by high-performance chelation ion chromatography, Anal. Commun. 34 (1997) 7–8.10.1039/a607966k
  • A.I. Elefterov, M.G. Kolpachnikova, P.N. Nesterenko, O.A. Shpigun, Ion-exchange properties of glutamic acid-bonded silica, J. Chromatogr. A 769 (1997) 179–188.10.1016/S0021-9673(97)00035-6
  • M.H. Sorour, H.A. Hani, H.F. Shaalan, M.M. El Sayed, M.M.H. El-Sayed, Softening of seawater and desalination brines using grafted polysaccharide hydrogels, Desalin. Water Treat. 55(9) (2015) 2389–2397.10.1080/19443994.2014.947783
  • P. Jones, O.J. Challenger, S.J. Hill, N.W. Barnett, Application of chelating exchange ion chromatography to the determination of trace metals in high ionic strength media, Anal. Proc. 29 (1992) 91–93.
  • R.M.C. Sutton, S.J. Hill, P. Jones, Comparison of the chelating ion exchange properties of dye coated cellulose and polystyrene substrates for the separation and determination of trace metals from aqueous media, J. Chromatogr. A 739 (1996) 81–86.10.1016/0021-9673(96)00219-1
  • O.K. Júnior, L.V.A. Gurgel, L.F. Gil, Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD), Carbohyd. Polym. 79 (2010) 184–191.
  • J. Sabaté, M. Pujolà, J. Llorens, Two-phases model for calcium removal from aqueous solution by polymer enhanced ultrafiltration, J. Membr. Sci. 204(1–2) (2002) 139–152.10.1016/S0376-7388(02)00029-7
  • A.K. Ghosh, V. Ramachandhran, S.P. Singh, M.S. Hanra, M.K. Trivedi, B.M. Misra, Preparation and characterization of polysulfone and polyethersulfone membranes for calcium (Ca2+) and magnesium (Mg2+) separation by complexation ultrafiltration, J. Macromol. Sci., Part A 39(6) (2002) 557–572.10.1081/MA-120004247
  • M.H. Sorour, H.A. Hani, H.F. Shaalan, G.A. Al-Bazedi, Schemes for salt recovery from seawater and RO brines using chemical precipitation, Desalin. Water Treat. 55(9) (2015) 2398–2407.10.1080/19443994.2014.946720
  • R.H. Perry, Perry’s Chemical Engineers’ Handbook, 7th ed, McGraw-Hill, 1997.
  • H.S. Fogler, Elements of Chemical Reaction Engineering, third ed., Prentice-Hall PTR, New Jersy, 1999.
  • H.A. Hani, Studies on Zeolites for Heavy Metals Removal, PhD. Thesis, Cairo University, Egypt 2010.
  • Y.S. Ho, J.F. Porter, G. McKay, Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems, Water Air Soil Pollut. 141 (2002) 1–33.10.1023/A:1021304828010
  • J. Peric, M. Trgo, N.V. Medvidovic, Removal of zinc, copper and lead by natural zeolite- a comparison of adsorption isotherms, Water Res. 38 (2004) 1839–1899.
  • F. Helfferich, Ion Exchange, Mc Graw Hill, New York, NY, 1962.
  • C. Tuncer, I. Recai, Determination of the competitive adsorption of heavy metal ions on poly (N-vinyl-2-pyrrolidone/acrylic acid) hydrogels by differential pulse polarography, J. Appl. Polym. Sci. 89 (2003) 2013–2018.
  • R.W. Schmid, C.N. Reilley, New complexon for titration of calcium in presence of magnesium, Anal. Chem. 29 (1957) 264–268.10.1021/ac60122a026
  • N. Qin, R. Olcese, M. Bransby, T. Lin, L. Birnbaumer, Ca2+-induced inhibition of the cardiac Ca2+ channel depends on calmodulin, Proc. Nat. Acad. Sci. 96(5) (1999) 2435–2438.10.1073/pnas.96.5.2435
  • D.C. Harris Quantitative Chemical Analysis, eighth ed., Freeman and Company, Savannah River National Laboratory, Jackson, SC, USA, 2011
  • K.H. Schrøder, Polarography of some complexes with N-hydroxyethylethylenediamine-triacetic acid, Acta Chem. Scand. 16 (1962) 1315–1320.10.3891/acta.chem.scand.16-1315
  • K.L. Cheng, K. Ueno, T. lmamura, CRC Handbook of Organic Analytical Reagents, CRC Press, Boca Raton 1982.
  • N.J. Bridges, L.E. Roy, C.L. Klug, Computation and Spectroscopic Investigation of the DTPA Complexes Report, U.S. Department of Energy, Thermodynamic and Kinetics of Advanced Separation Systems, August 2012.10.2172/1047457
  • D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry, nineth ed., Mary Flnch, Belmont, USA, 2014.
  • T.J.M. Schoenmakers, G.J. Visser, G. Flik, A.P.R. Theuvenet, CHELATOR: An improved method for computing metal ion concentrations in physiological solutions, Biotechniques 12 (1992) 870–879. Available from: <http://maxchelator.stanford.edu/CaEGTA-TS.htm.>.
  • D. Mohan, K.P. Singh, Single and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse an agricultural waste, Water Res. 36 (2002) 2304–2318.10.1016/S0043-1354(01)00447-X
  • K.M. Abd El-Rahman, A.M. El-Kamash, M.R. El-Sourougy, N.M. Abdel-Moniem, Thermodynamic modeling for the removal of Cs+, Sr2+, Ca2+ and Mg2+ ions from aqueous waste solutions using zeolite A, J. Radioanal. Nucl. Chem. 268 (2006) 221–230.10.1007/s10967-006-0157-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.