123
Views
7
CrossRef citations to date
0
Altmetric
Articles

Influence of palm oil fuel ash, an agro-industry waste on the ultrafiltration performance of cellulose acetate butyrate membrane

, , , &
Pages 26414-26426 | Received 22 Nov 2015, Accepted 02 Mar 2016, Published online: 15 Apr 2016

References

  • X.-L. Li, L.-P. Zhu, B.-K. Zhu, Y.-Y. Xu, High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent, Sep. Purif. Technol. 83 (2011) 66–73.10.1016/j.seppur.2011.09.012
  • C. Xing, H. Wang, Q. Hu, F. Xu, X. Cao, J. You, Y. Li, Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends, Carbohydr. Polym. 92 (2013) 1921–1927.10.1016/j.carbpol.2012.11.058
  • M.H. Asgarkhani, S.M. Mousavi, E. Saljoughi, Cellulose acetate butyrate membrane containing TiO2 nanoparticle: Preparation, characterization and permeation study, Korean J. Chem. Eng. 30 (2013) 1819–1824.10.1007/s11814-013-0122-8
  • A.D. Sabde, M.K. Trivedi, V. Ramachandhran, M.S. Hanra, B.M. Misra, Casting and characterization of cellulose acetate butyrate based UF membranes, Desalination 114 (1997) 223–232.10.1016/S0011-9164(98)00014-9
  • M. Safiuddin, M. Abdus Salam, M.Z. Jumaat, Utilization of palm oil fuel ash in concrete: A review, J. Civ. Eng. Manage. 17 (2011) 234–247.10.3846/13923730.2011.574450
  • M. Safiuddin, M.Z. Jumaat, M.A. Salam, M.S. Islam, R. Hashim, Utilization of solid wastes in construction materials, Int. J. Phys. Sci. 5 (2010) 1952–1963.
  • A.S.M.A. Awal, M.W. Hussin, The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction, Cem. Concr. Compos. 19 (1997) 367–372.10.1016/S0958-9465(97)00034-6
  • M. Ghiaci, A. Abbaspur, R. Kia, F. Seyedeyn-Azad, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41, Sep. Purif. Technol. 40 (2004) 217–229.10.1016/j.seppur.2004.03.001
  • B. Bayat, Combined removal of zinc(II) and cadmium(II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash, Water Air Soil Pollut. 136 (2002) 69–92.10.1023/A:1015296032528
  • V. Chantawong, N.W. Harvey, V.N. Bashkin, Comparison of heavy metal adsorptions by Thai kaolin and ballclay, Water Air Soil Pollut. 148 (2003) 111–125.10.1023/A:1025401927023
  • H.R. Pant, H.J. Kim, M.K. Joshi, B. Pant, C.H. Park, J.I. Kim, K.S. Hui, C.S. Kim, One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification, J. Hazard. Mater. 264 (2014) 25–33.10.1016/j.jhazmat.2013.10.066
  • L. Zhu, Y. Dong, L. Li, J. Liu, S.-J. You, Coal fly ash industrial waste recycling for fabrication of mullite-whisker-structured porous ceramic membrane supports, RSC Adv. 5 (2015) 11163–11174.10.1039/C4RA10912K
  • L. Li, C. Hu, X. Dai, W. Jin, C. Hu, F. Ma, The performance of a biological aerated filter loaded with a novel non-sintered fly-ash ceramsite as pretreatment for dual membrane processes, Environ. Technol. 36 (2015) 2024–2034.10.1080/09593330.2015.1019930
  • S. Kara, C. Aydiner, E. Demirbas, M. Kobya, N. Dizge, Modeling the effects of adsorbent dose and particle size on the adsorption of reactive textile dyes by fly ash, Desalination 212 (2007) 282–293.10.1016/j.desal.2006.09.022
  • M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50 (2011) 13589–13613.10.1021/ie201477c
  • U.R. Lakshmi, V.C. Srivastava, I.D. Mall, D.H. Lataye, Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye, J. Environ. Manage. 90 (2009) 710–720.10.1016/j.jenvman.2008.01.002
  • L. Krishnamoorthy, P.M. Arif, R. Ahmedkhan, Separation of proteins from aqueous solution using cellulose acetate/poly(vinyl chloride) blend ultrafiltration membrane, J. Mater. Sci. 46 (2010) 2914–2921.
  • V. Gupta, S. Sharma, I. Yadav, D. Mohan, Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater, J. Chem. Technol. Biotechnol. 71 (1998) 180–186.10.1002/(ISSN)1097-4660
  • V.K. Gupta, D. Mohan, S. Sharma, M. Sharma, Removal of basic dyes (Rhodamine B and methylene blue) from aqueous solutions using bagasse fly ash, Sep. Sci. Technol. 35 (2000) 2097–2113.10.1081/SS-100102091
  • E. Yildiz, Phosphate removal from water by fly ash using crossflow microfiltration, Sep. Purif. Technol. 35 (2004) 241–252.10.1016/S1383-5866(03)00145-X
  • P.S. Saud, B. Pant, M. Park, S.-H. Chae, S.-J. Park, M. EI-Newehy, S.S. Al-Deyab, H.-Y. Kim, Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants, Ceram. Int. 41 (2015) 1771–1777.10.1016/j.ceramint.2014.09.123
  • K.H. Chu, M.A. Hashim, Adsorption characteristics of trivalent chromium on palm oil fuel ash, Clean Technol. Environ. Policy 4 (2002) 8–15.10.1007/s10098-001-0128-5
  • M. Hasan, A.L. Ahmad, B.H. Hameed, Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads, Chem. Eng. J. 136 (2008) 164–172.10.1016/j.cej.2007.03.038
  • S. Deng, R.B. Bai, Aminated polyacrylonitrile fibers for humic acid adsorption: Behaviors and mechanisms, Environ. Sci. Technol. 37 (2003) 5799–5805.10.1021/es034399d
  • H. Sehaqui, U. Perez de Larraya, P. Tingaut, T. Zimmermann, Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(II) and a positively charged dye, Soft Matter 11 (2015) 5294–5300.10.1039/C5SM00566C
  • S. Wang, Q. Ma, Z.H. Zhu, Characteristics of unburned carbons and their application for humic acid removal from water, Fuel Process. Technol. 90 (2009) 375–380.10.1016/j.fuproc.2008.10.010
  • T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution, J. Colloid Interface Sci. 333 (2009) 114–119.10.1016/j.jcis.2009.02.005
  • J. Wang, L. Bi, Y. Ji, H. Ma, X. Yin, Removal of humic acid from aqueous solution by magnetically separable polyaniline: Adsorption behavior and mechanism, J. Colloid Interface Sci. 430 (2014) 140–146.
  • A. Mehrparvar, A. Rahimpour, M. Jahanshahi, Modified ultrafiltration membranes for humic acid removal, J. Taiwan Inst. Chem. Eng. 45 (2014) 275–282.10.1016/j.jtice.2013.06.003
  • R.S. Hebbar, A.M. Isloor, A.F. Ismail, S.J. Shilton, A. Obaid, H.-K. Fun, Probing the morphology and anti-organic fouling behaviour of a polyetherimide membrane modified with hydrophilic organic acids as additives, New J. Chem. 39 (2015) 6141–6150.
  • A. Sotto, A. Boromand, S. Balta, J. Kim, B. Van der Bruggen, Doping of polyethersulfone nanofiltration membranes: Antifouling effect observed at ultralow concentrations of TiO2 nanoparticles, J. Mater. Chem. 21 (2011) 10311–10320.10.1039/c1jm11040c
  • Z. Chen, M. Deng, Y. Chen, G. He, M. Wu, J. Wang, Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications, J. Membr. Sci. 235 (2004) 73–86.10.1016/j.memsci.2004.01.024
  • V. Vatanpour, S.S. Madaeni, A.R. Khataee, E. Salehi, S. Zinadini, H.A. Monfared, TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance, Desalination 292 (2012) 19–29.10.1016/j.desal.2012.02.006
  • V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes, Sep. Purif. Technol. 90 (2012) 69–82.10.1016/j.seppur.2012.02.014
  • N.M. Altwair, M.M. Johari, S.F.S. Hashim, Strength activity index and microstructural characteristics of treated palm oil fuel ash, Int. J. Civ. Environ. Eng. 11 (2011) 100–107.
  • A. Sharma, K. Srivastava, V. Devra, A. Rani, Modification in properties of fly ash through mechanical and chemical activation, Am. Chem. Sci. J. 2 (2012) 177–187.10.9734/ACSJ
  • A. Sharma, S. Katara, S. Kabra, A. Rani, Acid activated fly ash, as a novel solid acid catalyst for esterification of acetic acid, Indian J. Appl. Res. 3 (2013) 37–39.
  • K.Y. Foo, B.H. Hameed, Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste, Adv. Colloid Interface Sci. 152 (2009) 39–47.10.1016/j.cis.2009.09.005
  • D.C.D. Nath, S. Bandyopadhyay, A. Yu, D. Blackburn, C. White, High strength bio-composite films of poly(vinyl alcohol) reinforced with chemically modified-fly ash, J. Mater. Sci. 45 (2009) 1354–1360.
  • H. Wu, J. Mansouri, V. Chen, Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes, J. Membr. Sci. 433 (2013) 135–151.10.1016/j.memsci.2013.01.029
  • V.R. Pereira, A.M. Isloor, A. Ahmed, A. Ismail, Preparation, characterization and the effect of PANI coated TiO2 nanocomposites on the performance of polysulfone ultrafiltration membranes, New J. Chem. 39 (2015) 703–712.10.1039/C4NJ01594K
  • S. Qiu, L. Wu, X. Pan, L. Zhang, H. Chen, C. Gao, Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes, J. Membr. Sci. 342 (2009) 165–172.10.1016/j.memsci.2009.06.041
  • S. Zhao, Z. Wang, X. Wei, X. Tian, J. Wang, S. Yang, S. Wang, Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance, J. Membr. Sci. 385–386 (2011) 110–122.10.1016/j.memsci.2011.09.029
  • S. Xia, M. Ni, Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal, J. Membr. Sci. 473 (2015) 54–62.10.1016/j.memsci.2014.09.018
  • J. Hong, Y. He, Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes, Desalination 302 (2012) 71–79.10.1016/j.desal.2012.07.001
  • A. Cui, Z. Liu, C. Xiao, Y. Zhang, Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS, J. Membr. Sci. 360 (2010) 259–264.10.1016/j.memsci.2010.05.023
  • F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of PVDF membranes, J. Membr. Sci. 375 (2011) 1–27.10.1016/j.memsci.2011.03.014
  • M. Hashino, K. Hirami, T. Katagiri, N. Kubota, Y. Ohmukai, T. Ishigami, T. Maruyama, H. Matsuyama, Effects of three natural organic matter types on cellulose acetate butyrate microfiltration membrane fouling, J. Membr. Sci. 379 (2011) 233–238.10.1016/j.memsci.2011.05.068
  • P.S. Yune, J.E. Kilduff, G. Belfort, Fouling-resistant properties of a surface-modified poly(ether sulfone) ultrafiltration membrane grafted with poly(ethylene glycol)-amide binary monomers, J. Membr. Sci. 377 (2011) 159–166.10.1016/j.memsci.2011.04.029
  • D.C.D. Nath, S. Bandyopadhyay, P. Boughton, A. Yu, D. Blackburn, C. White, Chemically modified fly ash for fabricating super-strong biodegradable poly(vinyl alcohol) composite films, J. Mater. Sci. 45 (2010) 2625–2632.10.1007/s10853-010-4240-y
  • A. Alpatova, S. Verbych, M. Bryk, R. Nigmatullin, N. Hilal, Ultrafiltration of water containing natural organic matter: Heavy metal removing in the hybrid complexation–ultrafiltration process, Sep. Purif. Technol. 40 (2004) 155–162.10.1016/j.seppur.2004.02.003
  • I.L. Küchler, N. Miekeley, Ultrafiltration of humic compounds through low molecular mass cut-off level membranes, Sci. Total Environ. 154 (1994) 23–28.10.1016/0048-9697(94)90610-6
  • P.D. Peeva, A.E. Palupi, M. Ulbricht, Ultrafiltration of humic acid solutions through unmodified and surface functionalized low-fouling polyethersulfone membranes—Effects of feed properties, molecular weight cut-off and membrane chemistry on fouling behavior and cleanability, Sep. Purif. Technol. 81 (2011) 124–133.10.1016/j.seppur.2011.07.005
  • Z. Domany, I. Galambos, G. Vatai, E. Bekassy-Molnar, Humic substances removal from drinking water by membrane filtration, Desalination 145 (2002) 333–337.10.1016/S0011-9164(02)00432-0
  • N.A.A. Hamid, A.F. Ismail, T. Matsuura, A.W. Zularisam, W.J. Lau, E. Yuliwati, M.S. Abdullah, Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal, Desalination 273 (2011) 85–92.10.1016/j.desal.2010.12.052
  • Y.L. Thuyavan, N. Anantharaman, G. Arthanareeswaran, A.F. Ismail, Adsorptive removal of humic acid by zirconia embedded in a poly(ether sulfone) membrane, Ind. Eng. Chem. Res. 53 (2014) 11355–11364.10.1021/ie5015712
  • L.-L. Hwang, H.-H. Tseng, J.-C. Chen, Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance, J. Membr. Sci. 384 (2011) 72–81.10.1016/j.memsci.2011.09.005
  • J.-J. Qin, M.H. Oo, Y. Li, Hollow fiber ultrafiltration membranes with enhanced flux for humic acid removal, J. Membr. Sci. 247 (2005) 119–125.10.1016/j.memsci.2004.09.016
  • S.P. Malinga, O.A. Arotiba, R.W.M. Krause, S.F. Mapolie, M.S. Diallo, B.B. Mamba, Nanostructured β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI) embedded in polysulfone membrane for the removal of humic acid from water, Sep. Sci. Technol. 48 (2013) 2724–2734.10.1080/01496395.2013.809108

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.