104
Views
9
CrossRef citations to date
0
Altmetric
Articles

Recovery and application of heavy metals from pickling waste liquor (PWL) and electroplating wastewater (EPW) by the combination process of ferrite nanoparticles

, , , &
Pages 29264-29273 | Received 09 Dec 2015, Accepted 24 Mar 2016, Published online: 13 Apr 2016

References

  • F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418.10.1016/j.jenvman.2010.11.011
  • B. Mokhtari, K. Pourabdollah, Inclusion desalination of alkali metal cations by emulsion liquid membranes and nano-baskets of p-tert-calix[4]arene bearing di-[N-(X)sulfonyl carboxamide] and di-(1-propoxy) in para-cone conformation, Desalination 292 (2012) 1–8.10.1016/j.desal.2012.02.004
  • B. Mokhtari, K. Pourabdollah, Inclusion extraction of alkali metals by emulsion liquid membranes bearing nano-baskets, J. Incl. Phenom. Macrocycl. Chem. 76 (2013) 403–413.10.1007/s10847-012-0212-y
  • T. Benvenuti, R.S. Krapf, M.A.S. Rodrigues, A.M. Bernardes, J. Zoppas-Ferreira, Recovery of nickel and water from nickel electroplating wastewater by electrodialysis, Sep. Purif. Technol. 129 (2014) 106–112.10.1016/j.seppur.2014.04.002
  • T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Physico-chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006) 83–98.10.1016/j.cej.2006.01.015
  • M.A. Barakat, New trends in removing heavy metals from industrial wastewater, Arabian J. Chem. 4 (2011) 361–377.10.1016/j.arabjc.2010.07.019
  • A. Mahmoud, A.F.A. Hoadley, An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater, Water Res. 46 (2012) 3364–3376.10.1016/j.watres.2012.03.039
  • K.N. Njau, M. Woude, G.J. Visser, L.J.J. Janssen, Electrochemical removal of nickel ions from industrial wastewater, Chem. Eng. J. 79 (2000) 187–195.10.1016/S1385-8947(00)00210-2
  • T.A. Green, S. Roy, K. Scott, Recovery of metal ions from spent solutions used to electrodeposit magnetic materials, Sep. Purif. Technol. 22–23 (2001) 583–590.10.1016/S1383-5866(00)00141-6
  • N. Tzanetakis, W.M. Taama, K. Scott, R.J.J. Jachuck, R.S. Slade, J. Varcoe, Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt, Sep. Purif. Technol. 30 (2003) 113–127.10.1016/S1383-5866(02)00139-9
  • M.A.S. Rodrigues, F.D.R. Amado, J.L.N. Xavier, K.F. Streit, A.M. Bernardes, J.Z. Ferreira, Application of photoelectrochemical-electrodialysis treatment for the recovery and reuse of water from tannery effluents, J. Cleaner Prod. 16 (2008) 605–611.10.1016/j.jclepro.2007.02.002
  • C.S. Peng, Y.Y. Liu, J.J. Bi, H.Z. Xu, A.S. Ahmed, Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis, J. Hazard. Mater. 189 (2011) 814–820.10.1016/j.jhazmat.2011.03.034
  • F. Rögener, M. Sartor, A. Bán, D. Buchloh, T. Reichardt, Metal recovery from spent stainless steel pickling solutions, Resour. Conserv. Recycl. 60 (2012) 72–77.10.1016/j.resconrec.2011.11.010
  • J.Z. Zhou, Y.Y. Wu, C. Liu, A. Orpe, Q.A. Liu, Z.P. Xu, G.R. Qian, S.Z. Qiao, Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides, Environ. Sci. Technol. 44 (2010) 8884–8890.10.1021/es102884v
  • Y.F. Xu, J. Zhang, J.Z. Zhou, C. Chen, Q. Liu, G.R. Qian, Z.P. Xu, CN and heavy metal removal through formation of layered double hydroxides from mixed CN-containing electroplating wastewaters and pickle acid liquor, Chem. Eng. J. 215–216 (2013) 411–417.10.1016/j.cej.2012.10.074
  • W. McKinnon, J.W. Choung, Z. Xu, J.A. Finch, Magnetic seed in ambient temperature ferrite process applied to acid mine drainage treatment, Environ. Sci. Technol. 34 (2000) 2576–2581.10.1021/es9910863
  • B.E. Morgan, O. Lahav, R.E. Loewenthal, Advances in seeded ambient temperature ferrite formation for treatment of acid mine drainage, Environ. Sci. Technol. 39 (2005) 7678–7683.10.1021/es050498a
  • D. Chen, Y. Li, J. Zhang, W.H. Li, J.Z. Zhou, L. Shao, G.R. Qian, Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater, J. Hazard. Mater. 243 (2012) 152–160.10.1016/j.jhazmat.2012.10.014
  • W.X. Wang, Z.H. Xu, J. Finch, Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage, Environ. Sci. Technol. 30 (1996) 2604–2608.10.1021/es960006h
  • K. Shih, T. White, J.O. Leckie, Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior, Environ. Sci. Technol. 40 (2006) 5520–5526.10.1021/es0601033
  • P. Xiong, Q. Chen, M.Y. He, X.Q. Sun, X. Wang, Cobalt ferrite-polyaniline heteroarchitecture: A magnetically recyclable photocatalyst with highly enhanced performances, J. Mater. Chem. 22 (2012) 17485–17493.10.1039/c2jm31522j
  • P.R. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang, M. Tadé, Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution, Appl. Catal. B: Environ. 100 (2010) 529–534.10.1016/j.apcatb.2010.09.006
  • S. Bai, X.P. Shen, X. Zhong, Y. Liu, G.X. Zhu, X. Xu, K.M. Chen, One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal, Carbon 50 (2012) 2337–2346.10.1016/j.carbon.2012.01.057
  • Y.J. Yao, Y.M. Cai, F. Lu, F.Y. Wei, X.Y. Wang, S.B. Wang, Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants, J. Hazard. Mater. 270 (2014) 61–70.10.1016/j.jhazmat.2014.01.027
  • S. Heng, K.L. Yeung, A. Julbe, A. Ayral, J.C. Schrotter, Preparation of composite zeolite membrane separator/contactor for ozone water treatment, Microporous Mesoporous Mater. 115 (2008) 137–146.10.1016/j.micromeso.2007.12.038
  • S. Christoskova, M. Stoyanova, M. Georgieva, Low-temperature iron-modified cobalt oxide system Part 2. Catalytic oxidation of phenol in aqueous phase, Appl. Catal. A-Gen. 208 (2001) 243–249.
  • T. Zhang, H.B. Zhu, J.P. Croué, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: Efficiency, stability, and mechanism, Environ. Sci. Technol. 47 (2013) 2784–2791.10.1021/es304721g
  • Y.J. Yao, Z.H. Yang, D.W. Zhang, W.C. Peng, H.Q. Sun, S.B. Wang, Magnetic CoFe2O4–Graphene hybrids: Facile synthesis, characterization, and catalytic properties, Ind. Eng. Chem. Res. 51 (2012) 6044–6051.10.1021/ie300271p
  • J. Deng, Y.S. Shao, N.Y. Gao, C.Q. Tan, S.Q. Zhou, X.H. Hu, CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water, J. Hazard. Mater. 262 (2013) 836–844.10.1016/j.jhazmat.2013.09.049
  • Y.B. Ding, L.H. Zhu, N. Wang, H.Q. Tang, Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate, Appl. Catal. B: Environ. 129 (2013) 153–162.10.1016/j.apcatb.2012.09.015
  • S. Kanchi, P. Anuradha, B.N. Kumar, K. Gopalakrishnan, P. Ravi, Quantification of Se(IV) and Co(II) in Macrobrachium lamarrei, fresh water prawns and their feeding materials, Arabian J. Chem. (2012), doi: 10.1016/j.arabjc.2012.08.001.
  • S. Kanchi, K. Bisetty, G. Kumar, C.-Y. Lin, T.-S. Chin, Development of green energy waste activated carbon for removal of trivalent chromium: Equilibrium and kinetic modeling, Sep. Sci. Technol. 49 (2014) 513–522.10.1080/01496395.2013.847459
  • R. Ghahremanzadeh, Z. Rashid, A.H. Zarnani, H. Naeimi, Synthesis of novel spirooxindoles in water by using MnFe2O4 nanoparticles as an efficient magnetically recoverable and reusable catalyst, Appl. Catal. A: Gen. 467 (2013) 270–278.10.1016/j.apcata.2013.07.029
  • Y.S. Fu, P. Xiong, H.Q. Chen, X.Q. Sun, X. Wang, High photocatalytic activity of magnetically separable manganese ferrite-graphene heteroarchitectures, Ind. Eng. Chem. Res. 51 (2012) 725–731.10.1021/ie2026212
  • P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Curr. Appl. Phys. 11 (2011) 101–108.10.1016/j.cap.2010.06.027
  • M. Pagano, A. Volpe, G. Mascolo, A. Lopez, V. Locaputo, R. Ciannarella, Peroxymonosulfate-Co(II) oxidation system for the removal of the non-ionic surfactant Brij 35 from aqueous solution, Chemosphere 86 (2012) 329–334.10.1016/j.chemosphere.2011.09.010
  • Y.Q. Wang, R.M. Cheng, Z. Wen, L.J. Zhao, Synthesis and characterization of single-crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment, Eur. J. Inorg. Chem. 2011(19) (2011) 2942–2947.10.1002/ejic.v2011.19
  • S.M. Sun, W.Z. Wang, L. Zhang, L. Zhou, W.Z. Yin, M. Shang, Visible light-induced efficient contaminant removal by Bi5O7I, Environ. Sci. Technol. 43 (2009) 2005–2010.10.1021/es8032814
  • H. Kyung, J. Lee, W.Y. Choi, Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination, Environ. Sci. Technol. 39 (2005) 2376–2382.10.1021/es0492788
  • A.R. Negri, G. Jimenez, R.T. Hill, R.C. Francis, Caroate delignification Part 4: The generation and role of hydroxyl radicals, Tappi J. 81 (1998) 241–246.
  • Y.H. Guan, J. Ma, X.C. Li, J.Y. Fang, L.W. Chen, Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system, Environ. Sci. Technol. 45 (2011) 9308–9314.10.1021/es2017363
  • C.J. Liang, H.W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res. 48 (2009) 5558–5562.10.1021/ie9002848
  • G.P. Anipsitakis, D.D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol. 38 (2004) 3705–3712.10.1021/es035121o
  • Y.B. Wang, H.Y. Zhao, M.F.Q. Li, J.H. Fan, G.H. Zhao, Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid, Appl. Catal. B: Environ. 147 (2014) 534–545.10.1016/j.apcatb.2013.09.017
  • S. Fronaeus, J. Berglund, L.I. Elding, Iron−manganese redox processes and synergism in the mechanism for manganese-catalyzed Autoxidation of hydrogen sulfite, Inorg. Chem. 37 (1998) 4939–4944.10.1021/ic980225z
  • E.G. Heckert, S. Seal, W.T. Self, Fenton-like reaction catalyzed by the rare earth inner transition metal cerium, Environ. Sci. Technol. 42 (2008) 5014–5019.10.1021/es8001508
  • L.J. Xu, J.L. Wang, Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol, Environ. Sci. Technol. 46 (2012) 10145–10153.
  • T. Lan, L.C. Lei, B. Yang, X.W. Zhang, Z.J. Li, Kinetics of the iron(II)- and manganese(II)-catalyzed oxidation of S(IV) in seawater with acetic buffer: A study of seawater desulfurization process, Ind. Eng. Chem. Res. 52 (2013) 4740–4746.10.1021/ie303252y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.