557
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Understanding the interactions between biowaste valorisation and the Sustainable Development Goals: insights from an early transition stage

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 53-72 | Received 01 Sep 2023, Accepted 13 Feb 2024, Published online: 14 Mar 2024

References

  • Aghbashlo M, Hosseinzadeh-Bandbafha H, Shahbeik H, Tabatabaei M. 2022. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Res J. 9(3):1697–1706. doi: 10.18331/BRJ2022.9.3.5.
  • Alvarenga P, Mourinha C, Farto M, Santos T, Palma P, Sengo J, Morais MC, Cunha-Queda C. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Manag. 40(276):44–52. doi: 10.1016/j.wasman.2015.01.027.
  • Bennich T, Weitz N, Carlsen H. 2020. Deciphering the scientific literature on SDG interactions: a review and reading guide. Sci Total Environ. 728:138405. doi: 10.1016/j.scitotenv.2020.138405.
  • Bernstad A. 2014. Household food waste separation behavior and the importance of convenience. Waste Manag. 34(7):1317–1323. doi: 10.1016/j.wasman.2014.03.013. Internet.
  • Bradshaw C. 2018. Waste law and the value of food. J Environ Law. 30(2):311–331. doi: 10.1093/jel/eqy009.
  • Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. 2018. Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol. 248:37–56. doi: 10.1016/j.biortech.2017.06.145. Internet.
  • Bryman A. 2012. Social Research Methods. 4th ed. London, England: Oxford University Press.
  • Calicioglu Ö, Bogdanski A. 2021. Linking the bioeconomy to the 2030 sustainable development agenda: can SDG indicators be used to monitor progress towards a sustainable bioeconomy? N Biotechnol. 61(November 2020):40–49. doi: 10.1016/j.nbt.2020.10.010.
  • Christensen LD. 2022. Policy coherence in the Nordic bioeconomy? A novel set-theoretic approach to studying relations among policy goals. Environ Policy Gov. 32(5):390–410. doi: 10.1002/eet.1978.
  • Christensen T, Philippidis G, van Leeuwen M, Singh A, Panoutsou C. 2022. Bridging modelling and policymaking efforts to realize the European bioeconomy. GCB Bioenergy. 14(11):1183–1204. doi: 10.1111/gcbb.12996.
  • D’Amato D, Droste N, Allen B, Kettunen M, Lähtinen K, Korhonen J, Leskinen P, Matthies BD, Toppinen A. 2017. Green, circular, bio economy: a comparative analysis of sustainability avenues. J Clean Prod. 168:716–734. doi: 10.1016/j.jclepro.2017.09.053.
  • D’Amato D, Korhonen-Kurki K, Lyytikainen V, Matthies BD, Horcea-Milcu AI. 2022. Circular bioeconomy: actors and dynamics of knowledge co-production in Finland. For Policy Econ. 144(June 2021):102820. doi: 10.1016/j.forpol.2022.102820. Internet.
  • Dahiya S, Kumar AN, Shanthi Sravan J, Chatterjee S, Sarkar O, Mohan SV. 2018. Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol. 248(July 2017):2–12. doi: 10.1016/j.biortech.2017.07.176. Internet.
  • Ddiba D, Ekener E, Lindkvist M, Finnveden G. 2022. Sustainability assessment of increased circularity of urban organic waste streams. Sustain Prod Consum. 34:114–129. doi: 10.1016/j.spc.2022.08.030.
  • Drangert JO, Tonderski K, McConville J. 2018. Extending the European Union Waste Hierarchy to Guide Nutrient-Effective Urban Sanitation toward global food security—opportunities for phosphorus recovery. Front Sustain Food Syst. 2(February):1–13. doi: 10.3389/fsufs.2018.00003.
  • Elghali L, Clift R, Sinclair P, Panoutsou C, Bauen A. 2007. Developing a sustainability framework for the assessment of bioenergy systems. Energy Policy. 35(12):6075–6083. doi: 10.1016/j.enpol.2007.08.036.
  • Engström RE, Collste D, Cornell SE, Johnson FX, Carlsen H, Jaramillo F, Finnveden G, Destouni G, Howells M, Weitz N, et al. 2021. Succeeding at home and abroad: accounting for the international spillovers of cities’ SDG actions. NPJ Urban Sustain. 1(1). doi:10.1038/s42949-020-00002-w.
  • European Commission. 2018a. Directive (EU) 2018/851 of the European Parliament and of the council of 30 May 2018 amending directive 2008/98/EC on waste; Internet. http://data.europa.eu/eli/dir/2008/98/2018-07-05
  • European Commission. 2018b. A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment. [Internet]. Brussels. doi:10.2777/478385.
  • European Commission, Directorate-General for Research and Innovation, Platt R, Bauen A, Reumerman P, Geier C, Van Ree R, Vural Gursel I, Garcia L, Behrens M, Philip von B, et al. 2021. EU biorefinery outlook to 2030 – studies on support to research and innovation policy in the area of bio-based products and services [internet]. Brussels: Publications Office. 10.2777/103465.
  • Falconer RE, Haltas I, Varga L, Forbes PJ, Abdel-Aal M, Panayotov N. 2020. Anaerobic digestion of food waste: eliciting sustainable water-energy-food nexus practices with Agent Based Modelling and visual analytics. J Clean Prod. 255:120060. doi: 10.1016/j.jclepro.2020.120060. Internet.
  • Fuso Nerini F, Sovacool B, Hughes N, Cozzi L, Cosgrave E, Howells M, Tavoni M, Tomei J, Zerriffi H, Milligan B. 2019. Connecting climate action with other sustainable development goals. Nat Sustain. 2(8):674–680. doi:10.1038/s41893-019-0334-y. Internet.
  • Galanakis CM, Brunori G, Chiaramonti D, Matthews R, Panoutsou C, Fritsche UR. 2022. Bioeconomy and green recovery in a post-COVID-19 era. Sci Total Environ. 808:152180. doi: 10.1016/j.scitotenv.2021.152180. [Internet]. 808:152180.
  • Gheewala SH. 2023. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Res J. 10(1):1810–1815. doi: 10.18331/BRJ2023.10.1.5.
  • Hakkarainen V, Mäkinen-Rostedt K, Horcea-Milcu A, D’Amato D, Jämsä J, Soini K. 2022. Transdisciplinary research in natural resources management: towards an integrative and transformative use of co-concepts. Sustain Dev. 30(2):309–325. doi: 10.1002/sd.2276.
  • Hanssen SV, Daioglou V, Steinmann ZJN, Frank S, Popp A, Brunelle T, Lauri P, Hasegawa T, Huijbregts MAJ, Van Vuuren DP. 2020. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Clim Change. 163(3):1569–1586. doi: 10.1007/s10584-019-02539-x.
  • Heimann T. 2019. Bioeconomy and SDGs: does the bioeconomy support the achievement of the SDGs? Earth’s Futur. 7(1):43–57. doi: 10.1029/2018EF001014. Internet.
  • Hellenic Ministry of Environment and Energy. 2020. National Waste Management Plan 2020-2030 [Internet]. Greece. http://www.opengov.gr/minenv/wp-content/uploads/downloads/2020/08/ΕΣΔΑ-ΔΙΑΒΟΥΛΕΥΣΗ-6-8-2020.pdf
  • Hellenic Republic. 2021. Law 4819/2021 framework law for waste. Greece. http://www.publicrevenue.gr/elib/view?d=/gr/act/2021/4819/
  • Hernández-Orozco E, Lobos-Alva I, Cardenas-Vélez M, Purkey D, Nilsson M, Martin P. 2021. The application of soft systems thinking in SDG interaction studies: a comparison between SDG interactions at national and subnational levels in Colombia. Springer Netherlands. doi:10.1007/s10668-021-01808-z
  • Hoolohan C, Soutar I, Suckling J, Druckman A, Larkin A, McLachlan C. 2019. Stepping-up innovations in the water–energy–food nexus: a case study of anaerobic digestion in the UK. Geogr J. 185(4):391–405. doi: 10.1111/geoj.12259.
  • Huovila A, Siikavirta H, Antuña Rozado C, Rökman J, Tuominen P, Paiho S, Å H, Ylén P. 2022. Carbon-neutral cities: critical review of theory and practice. J Clean Prod. 341(February):130912. doi: 10.1016/j.jclepro.2022.130912.
  • Iacovidou E, Millward-Hopkins J, Busch J, Purnell P, Velis CA, Hahladakis JN, Zwirner O, Brown A. 2017. A pathway to circular economy: developing a conceptual framework for complex value assessment of resources recovered from waste. J Clean Prod. 168:1279–1288. doi: 10.1016/j.jclepro.2017.09.002. Internet.
  • International Advisory Council on Global Bioeconomy (IACGB). 2020. Global bioeconomy policy report (IV): a decade of bioeconomy policy development around the world. [internet]. (IV): 1–170. https://gbs2020.net/wp-content/uploads/2021/04/GBS-2020_Global-Bioeconomy-Policy-ReportIVweb-2.pdf
  • Jamieson S. 2004. Likert scales: how to (ab)use them. Med Educ. 38(12):1217–1218. doi: 10.1111/j.1365-2929.2004.02012.x.
  • Johansson N. 2021. Why is biogas production and not food donation the Swedish political priority for food waste management? Environ Sci Policy. 126(October):60–64. doi:10.1016/j.envsci.2021.09.020. Internet.
  • Johansson N. 2022. Recycling warning! Reconfiguring the toxic politics of a circular economy. Sustain Sci (Who 2004). 18(2):1043–1048. doi: 10.1007/s11625-022-01220-0.
  • Johansson N, Krook J. 2021. How to handle the policy conflict between resource circulation and hazardous substances in the use of waste? J Ind Ecol. 25(4):994–1008. doi: 10.1111/jiec.13103.
  • Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. 2018. What a waste 2.0, a Global Snapshot of Solid waste Management to 2050. Washington, DC: World Bank: The World Bank. [Internet]. 10.1596/978-1-4648-1329-0.
  • Kostetckaia M, Hametner M. 2022. How sustain Dev.(December goals interlinkages influence European Union countries’ progress towards the 2030 Agenda. Sustainable Dev. 30(5):916–926. doi: 10.1002/sd.2290.
  • Kroll C, Warchold A, Pradhan P. 2019. Sustainable development goals (SDGs): are we successful in turning trade-offs into synergies? Palgrave Commun. 5(1):1–11. doi:10.1057/s41599-019-0335-5. Internet.
  • Kuznetsova E, Cardin MA, Diao M, Zhang S. 2019. Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renew Sustain Energy Rev. 103(December 2017):477–500. doi: 10.1016/j.rser.2018.12.020. Internet.
  • Lindfors A, Feiz R, Eklund M, Ammenberg J. 2019. Assessing the potential, performance and feasibility of urban solutions: methodological considerations and learnings from biogas solutions. Sustain. 11(14):3756. doi: 10.3390/su11143756.
  • Di Lucia L, Slade R, Khan J. 2021. Decision-making fitness of methods to understand sustainable development goal interactions. Nat Sustain. 5(2):131–138. doi: 10.1038/s41893-021-00819-y.
  • Markard J, Raven R, Truffer B. 2012. Sustainability transitions: an emerging field of research and its prospects. Res Policy. 41(6):955–967. doi: 10.1016/j.respol.2012.02.013.
  • McCollum DL, Echeverri LG, Busch S, Pachauri S, Parkinson S, Rogelj J, Krey V, Minx JC, Nilsson M, Stevance AS, et al. 2018. Connecting the sustainable development goals by their energy inter-linkages. Environ Res Lett. 13(3):033006. doi:10.1088/1748-9326/aaafe3.
  • Misslin R, Clivot H, Levavasseur F, Villerd J, Soulié JC, Houot S, Therond O. 2022. Integrated assessment and modeling of regional recycling of organic waste. J Clean Prod. 379(October):134725. doi: 10.1016/j.jclepro.2022.134725.
  • Muscat A, de Olde EM, Kovacic Z, de Boer IJM, Ripoll-Bosch R. 2021. Food, energy or biomaterials? Policy coherence across agro-food and bioeconomy policy domains in the EU. Environ Sci Policy. 123(April):21–30. doi: 10.1016/j.envsci.2021.05.001.
  • Muscat A, de Olde EM, Ripoll-Bosch R, Van Zanten HHE, Metze TAP, CJAM T, van Ittersum MK, de Boer IJM. 2021. Principles, drivers and opportunities of a circular bioeconomy. Nat Food. 2(8):561–566. doi:10.1038/s43016-021-00340-7. Internet.
  • Nerland R, Nilsen HR, Andersen B. 2022. Biosphere-based sustainability in local governments: sustainable development goal interactions and indicators for policymaking. Sustain Dev (march). 31(1):39–55. doi: 10.1002/sd.2371.
  • Nilsson M, Chisholm E, Griggs D, Howden-Chapman P, McCollum D, Messerli P, Neumann B, Stevance AS, Visbeck M, Stafford-Smith M. 2018. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain Sci. 13(6):1489–1503. doi:10.1007/s11625-018-0604-z. Internet.
  • Nilsson M, Griggs D, Visbeck M. 2016. Policy: Map the interactions between Sustainable Development Goals. Nature. 534(7607):320–322. doi: 10.1038/534320a.
  • Nilsson M, Zamparutti T, Petersen JE, Nykvist B, Rudberg P, Mcguinn J. 2012. Understanding policy coherence: analytical framework and examples of sector-environment policy interactions in the EU. Environ Policy Gov. 22(6):395–423. doi: 10.1002/eet.1589.
  • Ntostoglou E, Khatiwada D, Martin V. 2021. The potential contribution of decentralized anaerobic digestion towards urban biowaste recovery systems: a scoping review. Sustain. 13(23):13435. doi: 10.3390/su132313435.
  • Papargyropoulou E, Lozano R, Steinberger K, Wright J, Ujang N, Bin Z. 2014. The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod. 76:106–115. doi: 10.1016/j.jclepro.2014.04.020.
  • Pradhan P, Costa L, Rybski D, Lucht W, Kropp JP. 2017. A systematic study of sustainable development goal (SDG) interactions. Earth’s Futur. 5(11):1169–1179. doi: 10.1002/2017EF000632.
  • Purvis B, Mao Y, Robinson D. 2019. Three pillars of sustainability: in search of conceptual origins. Sustain Sci. 14(3):681–695. doi:10.1007/s11625-018-0627-5. Internet.
  • Qi D, Roe BE. 2017. Foodservice Composting Crowds Out Consumer Food Waste Reduction Behavior in a dining experiment. Am J Agric Econ. 99(5):1159–1171. doi: 10.1093/ajae/aax050.
  • Ramanauske N, Balezentis T, Streimikiene D. 2023. Biomass use and its implications for bioeconomy development: a resource efficiency perspective for the European countries. Technol Forecast Soc Change. 193(November 2022):122628. doi:10.1016/j.techfore.2023.122628. Internet.
  • Ranjbari M, Saidani M, Shams Esfandabadi Z, Peng W, Lam SS, Aghbashlo M, Quatraro F, Tabatabaei M. 2021. Two decades of research on waste management in the circular economy: insights from bibliometric, text mining, and content analyses. J Clean Prod. 314(June):128009. doi: 10.1016/j.jclepro.2021.128009. Internet.
  • Redlingshöfer B, Barles S, Weisz H. 2020. Are waste hierarchies effective in reducing environmental impacts from food waste? A systematic review for OECD countries. Resour Conserv Recycl. 156(January):104723. doi: 10.1016/j.resconrec.2020.104723. Internet.
  • Rejeb A, Rejeb K, Appolloni A, Treiblmaier H, Iranmanesh M. 2023. Circular Economy Research in the COVID-19 era: a review and the road ahead. place unknown: Springer International Publishing. doi:10.1007/s43615-023-00265-2.
  • Ronzon T, Iost S, Philippidis G. 2022. Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis. Environ Dev Sustain. 24(6):8195–8217. doi: 10.1007/s10668-021-01780-8.
  • Ronzon T, Sanjuán AI. 2020. Friends or foes? A compatibility assessment of bioeconomy-related sustainable development goals for European policy coherence. J Clean Prod. 254:119832. doi: 10.1016/j.jclepro.2019.119832.
  • Salvador R, Puglieri FN, Halog A, Andrade F, Piekarski CM, De Francisco AC. 2021. Key aspects for designing business models for a circular bioeconomy. J Clean Prod. Internet. 278:124341. doi: 10.1016/j.jclepro.2020.124341.
  • Santagata R, Ripa M, Genovese A, Ulgiati S. 2021. Food waste recovery pathways: challenges and opportunities for an emerging bio-based circular economy. A systematic review and an assessment. J Clean Prod. 286:125490. doi: 10.1016/j.jclepro.2020.125490. Internet.
  • Schroeder P, Anggraeni K, Weber U. 2019. The relevance of circular economy practices to the sustainable development goals. J Ind Ecol. 23(1):77–95. doi: 10.1111/jiec.12732.
  • Singh E, Kumar A, Mishra R, Kumar S. 2022. Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere. 288(P1):132451. doi: 10.1016/j.chemosphere.2021.132451. Internet.
  • Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A. 2019. Environmental and economic implications of recovering resources from food waste in a circular economy. Sci Total Environ. 693:693. doi: 10.1016/j.scitotenv.2019.07.322.
  • Soltanian S, Kalogirou SA, Ranjbari M, Amiri H, Mahian O, Khoshnevisan B, Jafary T, Nizami AS, Gupta VK, Aghaei S, et al. 2022. Exergetic sustainability analysis of municipal solid waste treatment systems: a systematic critical review. Renew Sustain Energy Rev. 156(December 2021):111975. Internet. doi: 10.1016/j.rser.2021.111975.
  • Stark S, Biber-Freudenberger L, Dietz T, Escobar N, Förster JJ, Henderson J, Laibach N, Börner J. 2022. Sustainability implications of transformation pathways for the bioeconomy. Sustain Prod Consum. 29:215–227. doi: 10.1016/j.spc.2021.10.011. Internet.
  • Starke JR, Metze TAP, Candel JJL, CJAM T. 2022. Conceptualizing controversies in the EU circular bioeconomy transition. AMBIO. 51(10):2079–2090. doi: 10.1007/s13280-022-01730-2.
  • Stegmann P, Londo M, Junginger M. 2020. The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour Conserv Recycl X [Internet]. 6(July 2019):100029. doi: 10.1016/j.rcrx.2019.100029.
  • Steiner T, Zhang Y, Möller JN, Agarwal S, Löder MGJ, Greiner A, Laforsch C, Freitag R. 2022. Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential. Sci Rep. 12(1):1–14. doi: 10.1038/s41598-022-12912-z.
  • Teigiserova DA, Hamelin L, Thomsen M. 2020. Towards transparent valorization of food surplus, waste and loss: clarifying definitions, food waste hierarchy, and role in the circular economy. Sci Total Environ. 706:136033. doi: 10.1016/j.scitotenv.2019.136033. Internet.
  • Thiriet P, Bioteau T, Tremier A. 2020. Optimization method to construct micro-anaerobic digesters networks for decentralized biowaste treatment in urban and peri-urban areas. J Clean Prod. 243:118478. doi: 10.1016/j.jclepro.2019.118478.
  • United Nations. 2015. Transforming our world: the 2030 agenda for sustainable development. doi:10.1163/157180910X12665776638740.
  • Vandermeersch T, Alvarenga RAF, Ragaert P, Dewulf J. 2014. Environmental sustainability assessment of food waste valorization options. Resour Conserv Recycl. 87:57–64. doi: 10.1016/j.resconrec.2014.03.008. Internet.
  • Vea EB, Martinez-Sanchez V, Thomsen M. 2018. A review of waste management decision support tools and their ability to assess circular biowaste management systems. Sustain. 10(10):40–60. doi: 10.3390/su10103720.
  • Venkata Mohan S, Dahiya S, Amulya K, Katakojwala R, Vanitha TK. 2019. Can circular bioeconomy be fueled by waste biorefineries — a closer look. Bioresour Technol Reports. 7(July):100277. doi: 10.1016/j.biteb.2019.100277. Internet.
  • Weidner T, Graça J, Machado T, Yang A. 2020. Comparison of local and centralized biowaste management strategies – a spatially-sensitive approach for the region of Porto. Waste Manag. 118:552–562. doi: 10.1016/j.wasman.2020.09.013. Internet.
  • Witjes S, Lozano R. 2016. Towards a more circular economy: proposing a framework linking sustainable public procurement and sustainable business models. Resour Conserv Recycl. 112:37–44. doi: 10.1016/j.resconrec.2016.04.015. Internet.
  • Zeller V, Lavigne C, D’Ans P, Towa E, Achten WMJ. 2020. Assessing the environmental performance for more local and more circular biowaste management options at city-region level. Sci Total Environ. 745:140690. doi: 10.1016/j.scitotenv.2020.140690.
  • Zeug W, Bezama A, Moesenfechtel U, Jähkel A, Thrän D. 2019. Stakeholders’ interests and perceptions of bioeconomy monitoring using a sustainable development goal framework. Sustain. 11(6):1511. doi: 10.3390/su11061511.