1,569
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Sustainable shape memory polymers based on epoxidized natural rubber cured by zinc ferulate via oxa-Michael reaction

, , , &
Pages 195-210 | Received 27 Sep 2015, Accepted 04 Dec 2015, Published online: 12 Jan 2016

References

  • E. Gil and S. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci. 29 (2004), pp. 1173–1222. doi:10.1016/j.progpolymsci.2004.08.003
  • C. Zeng, H. Seino, J. Ren, and N. Yoshie, Polymers with multishape memory controlled by local glass transition temperature, ACS Appl. Mater. Interfaces 6 (2014), pp. 2753–2758. doi:10.1021/am405287p
  • Z. Tang, D. Sun, D. Yang, B. Guo, L. Zhang, and D. Jia, Vapor grown carbon nanofiber reinforced bio-based polyester for electroactive shape memory performance, Compos. Sci. Technol. 75 (2013), pp. 15–21. doi:10.1016/j.compscitech.2012.11.019
  • A. Lendlein, H. Jiang, O. Jünger, and R. Langer, Light-induced shape-memory polymers, Nature 434 (2005), pp. 879–882. doi:10.1038/nature03496
  • W.M. Huang, B. Yang, L. An, C. Li, and Y.S. Chan, Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism, Appl. Phys. Lett. 86 (2005), pp. 114105. doi:10.1063/1.1880448
  • F. Li, X. Zhang, J. Hou, M. Xu, X. Luo, D. Ma, and B.K. Kim, Studies on thermally stimulated shape memory effect of segmented polyurethanes, J. Appl. Polym. Sci. 64 (1997), pp. 1511–1516. doi:10.1002/(ISSN)1097-4628
  • J. Hao and R. Weiss, Mechanically tough, thermally activated shape memory hydrogels, ACS Macro. Lett. 2 (2013), pp. 86–89. doi:10.1021/mz3006389
  • A. Lendlein and S. Kelch, Shape‐memory polymers, Angew. Chem. Int. Edit. 41 (2002), pp. 2034–2057. doi:10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  • M. Behl, J. Zotzmann, and A. Lendlein, Shape-memory polymers and shape-changing polymers, in Shape-Memory Polymers, A. Lendlein, eds., Vol. 226, Springer, Berlin, 2010, pp. 1–40.
  • J. Kunzelman, T. Chung, P.T. Mather, and C. Weder, Shape memory polymers with built-in threshold temperature sensors, J. Mater. Chem. 18 (2008), pp. 1082–1086. doi:10.1039/b718445j
  • A. Lendlein and R.S. Langer, Biodegradable Shape Memory Polymeric Sutures, United States Patent US8834522, 2012.
  • C. Liu, H. Qin, and P. Mather, Review of progress in shape-memory polymers, J. Mater. Chem. 17 (2007), pp. 1543–1558. doi:10.1039/b615954k
  • M.C. Serrano, L. Carbajal, and G.A. Ameer, Novel biodegradable shape‐memory elastomers with drug‐releasing capabilities, Adv. Mater. 23 (2011), pp. 2211–2215. doi:10.1002/adma.v23.19
  • H. Zhang, H. Wang, W. Zhong, and Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism, Polymer 50 (2009), pp. 1596–1601. doi:10.1016/j.polymer.2009.01.011
  • R. Weiss, E. Izzo, and S. Mandelbaum, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts, Macromolecules 41 (2008), pp. 2978–2980. doi:10.1021/ma8001774
  • Y.-W. Chang, J.K. Mishra, J.-H. Cheong, and D.-K. Kim, Thermomechanical properties and shape memory effect of epoxidized natural rubber crosslinked by 3-amino-1,2,4-triazole, Polym. Int. 56 (2007), pp. 694–698. doi:10.1002/(ISSN)1097-0126
  • H. Kang, M. Li, Z. Tang, J. Xue, X. Hu, L. Zhang, and B. Guo, Synthesis and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications, J. Mater. Chem. B 2 (2014), pp. 7877–7886. doi:10.1039/C4TB01304B
  • Y. Liu, K. Yao, X. Chen, J. Wang, Z. Wang, H.J. Ploehn, C. Wang, F. Chu, and C. Tang, Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids, Polym. Chem. 5 (2014), pp. 3170–3181. doi:10.1039/c3py01260c
  • S. Wang, S. Vajjala Kesava, E.D. Gomez, and M.L. Robertson, Sustainable thermoplastic elastomers derived from fatty acids, Macromolecules 46 (2013), pp. 7202–7212. doi:10.1021/ma4011846
  • Y. Xia and R.C. Larock, Vegetable oil-based polymeric materials: Synthesis, properties, and applications, Green Chem. 12 (2010), pp. 1893–1909. doi:10.1039/c0gc00264j
  • R. Bhardwaj and A.K. Mohanty, Advances in the properties of polylactides based materials: A review, J. Biobased Mater. Bioenergy 1 (2007), pp. 191–209. doi:10.1166/jbmb.2007.023
  • P.A. Wilbon, F. Chu, and C. Tang, Progress in renewable polymers from natural terpenes, terpenoids, and rosin, Macromol. Rapid Commun. 34 (2013), pp. 8–37. doi:10.1002/marc.v34.1
  • A. Gandini, The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chem. 13 (2011), pp. 1061–1083. doi:10.1039/c0gc00789g
  • T. Lin, S. Ma, Y. Lu, and B. Guo, New design of shape memory polymers based on natural rubber crosslinked via oxa-Michael reaction, ACS Appl. Mater. Interfaces 6 (2014), pp. 5695–5703. doi:10.1021/am500236w
  • T. Lin and B. Guo, Curing of rubber via oxa-Michael reaction toward significantly increased aging resistance, Ind. Eng. Chem. Res. 52 (2013), pp. 18123–18130. doi:10.1021/ie403485e
  • T. Lin, X. Zhang, Z. Tang, and B. Guo, Renewable conjugated acids as curatives for high-performance rubber/silica composites, Green Chem. 17 (2015), pp. 3301–3305. doi:10.1039/C5GC00834D
  • D.N. Krishnan, N. Prasanna, E.P. Sabina, and M. Rasool, Hepatoprotective and antioxidant potential of ferulic acid against acetaminophen-induced liver damage in mice, Comp. Clin. Path 22 (2012), pp. 1177–1181. doi:10.1007/s00580-012-1546-y
  • N. Kumar and V. Pruthi, Potential applications of ferulic acid from natural sources, Biotechnol. Rep. 4 (2014), pp. 86–93. doi:10.1016/j.btre.2014.09.002
  • A. Saija, A. Tomaino, R.L. Cascio, D. Trombetta, A. Proteggente, A. De Pasquale, N. Uccella, and F. Bonina, Ferulic and caffeic acids as potential protective agents against photooxidative skin damage, J. Sci. Food Agric. 79 (1999), pp. 476–480. doi:10.1002/(ISSN)1097-0010
  • C. Mancuso and R. Santangelo, Ferulic acid: Pharmacological and toxicological aspects, Food Chem. Toxicol. 65 (2014), pp. 185–195. doi:10.1016/j.fct.2013.12.024
  • E. Graf, Antioxidant potential of ferulic acid, Free Radic. Biol. Med. 13 (1992), pp. 435–448. doi:10.1016/0891-5849(92)90184-I
  • D.G. Shchukin, G.B. Sukhorukov, R.R. Price, and Y.M. Lvov, Halloysite nanotubes as biomimetic nanoreactors, Small 1 (2005), pp. 510–513. doi:10.1002/(ISSN)1613-6829
  • W.S. Guo, H.L. Kang, Y.W. Chen, B.C. Guo, and L.Q. Zhang, Stronger and faster degradable biobased poly(propylene sebacate) as shape memory polymer by incorporating boehmite nanoplatelets, ACS Appl. Mater Interfaces 4 (2012), pp. 4006–4014. doi:10.1021/am300828u
  • M.L. Du, B.C. Guo, and D.M. Jia, Newly emerging applications of halloysite nanotubes: A review, Polym. Int.. 59 (2010), pp. 574–582.
  • M. Du, B. Guo, Y. Lei, M. Liu, and D. Jia, Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance, Polymer 49 (2008), pp. 4871–4876. doi:10.1016/j.polymer.2008.08.042
  • Y.-M. Hong, Z.-L. Shen, X.-Q. Hu, W.-M. Mo, X.-F. He, B.-X. Hu, and N. Sun, Acid-catalyzed intramolecular oxa-Michael addition reactions under solvent-free and microwave irradiation conditions, Arkivoc. 14 (2009), pp. 146–155.
  • M. Chini, P. Crotti, L.A. Flippin, F. Macchia, and M. Pineschi, Regiochemical control of the ring-opening of 1, 2-epoxides by means of chelating processes. 2. Synthesis and reactions of the cis-and trans-oxides of 4-[(benzyloxy) methyl] cyclohexene, 3-cyclohexenemethanol, and methyl 3-cyclohexenecarboxylate, J. Org. Chem. 57 (1992), pp. 1405–1412. doi:10.1021/jo00031a018
  • I. Paterson and D.J. Berrisford, Meso epoxides in asymmetric synthesis: Enantioselective opening by nucleophiles in the presence of chiral Lewis acids, Angew. Chem. Int. Ed. Engl. 31 (1992), pp. 1179–1180. doi:10.1002/(ISSN)1521-3773
  • B.K. Kim, S.Y. Lee, and M. Xu, Polyurethanes having shape memory effects, Polymer 37 (1996), pp. 5781–5793. doi:10.1016/S0032-3861(96)00442-9
  • B.K. Kim, S.Y. Lee, J.S. Lee, S.H. Baek, Y.J. Choi, J.O. Lee, and M. Xu, Polyurethane ionomers having shape memory effects, Polymer 39 (1998), pp. 2803–2808. doi:10.1016/S0032-3861(97)00616-2