1,625
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Thermally and mechanically stable β-cyclodextrin/cellulose acetate nanofibers synthesized using an environmentally benign procedure

, , , , &
Pages 1-19 | Received 13 Oct 2016, Accepted 27 Jan 2017, Published online: 22 Feb 2017

References

  • C. Ding, W. Cheng, Z. Jin, and Y. Sun, Plasma synthesis of cyclodextrin/Al(OH)3 composites as adsorbents for removal of UO22+ from aqueous solutions, J. Mol. Liq. 207 (2015), pp. 224–230. doi:10.1016/j.molliq.2015.03.044
  • R. Zhao, Y. Wang, X. Li, B. Sun, and C. Wang, Synthesis of β-cyclodextrin-based electrospun nanofiber membranes for highly efficient adsorption and separation of methylene blue, ACS Appl. Mater. Interfaces 7 (2015), pp. 26649–26657. doi:10.1021/acsami.5b08403
  • H. Yamasaki, Y. Makihata, and K. Fukunaga, Preparation of crosslinked -cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater, J. Chem. Technol. Biotechnol. 83 (2008), pp. 991–997. doi:10.1002/jctb.1904
  • T.L. Vestland, O. Jacobsen, S.A. Sande, A.H. Myrset, and J. Klaveness, Compactible powders of omega-3 and cyclodextrin, Food. Chem. 185 (2015), pp. 151–158. doi:10.1016/j.foodchem.2015.03.132
  • K. Mphahlele, M.S. Onyango, and S.D. Mhlanga, Kinetics, equilibrium, and thermodynamics of the sorption of bisphenol A onto N-CNTs-β -cyclodextrin and Fe/N-CNTs-β-cyclodextrin nanocomposites, J. Nanomater 2015 (2015), pp. 1–13. doi:10.1155/2015/214327
  • S.V. Kurkov and T. Loftsson, Cyclodextrins, Int. J. Pharm. 453 (2013), pp. 167–180. doi:10.1016/j.ijpharm.2012.06.055
  • A. Magnusdottir, M. Masson, and T. Loftsson, Cyclodextrins, J. Incl. Phenom. Macrocycl. Chem. 44 (2002), pp. 213–218. doi:10.1023/A:1023079322024
  • J.R. Dias, F.E. Antunes, and P.J. Bártolo, Influence of the rheological behaviour in electrospun PCL nanofibres production for tissue engineering applications, Chem. Eng. Trans. 32 (2013), pp. 1015–1020.
  • M.Z. Elsabee, H.F. Naguib, and R.E. Morsi, Chitosan based nanofibers, review, Mater. Sci. Eng. C 32 (2012), pp. 1711–1726. doi:10.1016/j.msec.2012.05.009
  • C.A. Bonino, M.D. Krebs, C.D. Saquing, S. In, K.L. Shearer, E. Alsberg, and S.A. Khan, Electrospinning alginate-based nanofibers: From blends to crosslinked low molecular weight alginate-only systems, Carbohydr. Polym. 85 (2011), pp. 111–119. doi:10.1016/j.carbpol.2011.02.002
  • Y. Ikemoto, United States patent: Process for preparation of cellulose acetate, 4306060, 1981.
  • R.A. Festucci-Buselli, W.C. Otoni, and C.P. Joshi, Structure, organization, and functions of cellulose synthase complexes in higher plants, Brazilian J. Plant Physiol. 19 (2007), pp. 1–13. doi:10.1590/S1677-04202007000100001
  • B. Volkert, K. Hettrich, S. Fischer, K. Thu, I. Schmidt, and K. Fischer, Properties and applications of cellulose acetate, Macromol. Symp. 262 (2008), pp. 89–96. doi:10.1002/masy.200850210
  • L.N. Nthunya, M.L. Masheane, S.P. Malinga, E.N. Nxumalo, T.G. Barnard, M. Kao, Z.N. Tetana, and S.D. Mhlanga, A greener approach to prepare electrospun antibacterial β-cyclodextrin/cellulose acetate nanofibres for removal of bacteria from water, ACS Sustainable Chem. Eng. 5 (2017), pp. 153–160. doi:10.1021/acssuschemeng.6b01089
  • K.L. Salipira, B.B. Mamba, R.W. Krause, T.J. Malefetse, and S.H. Durbach, Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water, Environ. Chem. Lett. 5 (2007), pp. 13–17. doi:10.1007/s10311-006-0057-y
  • G. Yakovlev, G. Pervushin, I. Maeva, J. Keriene, I. Pudov, A. Shaybadullina, A. Buryanov, A. Korzhenko, and S. Senkov, Modification of construction materials with multi-walled carbon nanotubes, Procedia Eng. 57 (2013), pp. 407–413. doi:10.1016/j.proeng.2013.04.053
  • H.H. Lara, E.N. Garza-Treviño, L. Ixtepan-Turrent, and D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds, J. Nanobiotech 9 (2011), pp. 1–8. doi:10.1186/1477-3155-9-30
  • L.N. Nthunya, M.L. Masheane, S.P. Malinga, T.G. Barnard, E.N. Nxumalo, B.B. Mamba, and S.D. Mhlanga, UV-assisted reduction of in situ electrospun antibacterial chitosan-based nanofibres for removal of bacteria from water, RSC Adv 6 (2016), pp. 95936–95943. doi:10.1039/C6RA19472A
  • J.N. Tiwari, R.N. Tiwari, and K.S. Kim, Progress in materials science three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012), pp. 724–803. doi:10.1016/j.pmatsci.2011.08.003
  • M. Zamani, M.P. Prabhakaran, and S. Ramakrishna, Advances in drug delivery via electrospun and electrosprayed nanomaterials, Int. J. Nanomedicine. 8 (2013), pp. 2997–3017.
  • D.H. Reneker, A.L. Yarin, E. Zussman, and H. Xu, Electrospinning of nanofibers from polymer solutions and melts, Adv. Appl. Mech. 41 (2007), pp. 43–195.
  • D.H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology 7 (1996), pp. 216–223. doi:10.1088/0957-4484/7/3/009
  • M.L. Masheane, L.N. Nthunya, S.P. Malinga, E.N. Nxumalo, and S.D. Mhlanga, Chitosan-based nanocomposites for de-nitrification of water, Phys. Chem. Earth, Parts A/B/C (2016). doi:10.1016/j.pce.2016.10.004
  • M. Masheane, L. Nthunya, S. Malinga, E. Nxumalo, T. Barnard, and S. Mhlanga, Antimicrobial properties of chitosan-alumina/f-MWCNT nanocomposites, J. Nanotechnol 2016 (2016), pp. 1–6. doi:10.1155/2016/5404529
  • Z.N. Tetana, S.D. Mhlanga, G. Bepete, and N.J. Coville, The synthesis of nitrogen-doped multiwalled carbon nanotubes using an Fe-Co/CaCO3 catalyst, South. African J. Chem. 65 (2012), pp. 39–49.
  • S.D. Mhlanga, K.C. Mondal, R. Carter, M.J. Witcomb, and N. Coville, The effect of synthesis parameters on the catalytic synthesis of multiwalled carbon nanotubes using Fe-Co/CaCO3 catalysts, S. Afr. J. Chem. 62 (2009), pp. 67–76.
  • M. Ozdemir, E. Celik, and U. Cocen, Effect of viscosity on the production of alumina borate nanofibers via electrospinning, Mater. Technol. 47 (2013), pp. 735–738.
  • C.J. Thompson, G.G. Chase, A.L. Yarin, and D.H. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer 48 (2007), pp. 6913–6922. doi:10.1016/j.polymer.2007.09.017
  • T. Mazoochi, M. Hamadanian, M. Ahmadi, and V. Jabbari, Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters, Int. J. Ind. Chem. 3 (2012), pp. 1–8. doi:10.1186/2228-5547-3-2
  • D. Zhang, A.B. Karki, D. Rutman, D.P. Young, A. Wang, D. Cocke, T.H. Ho, and Z. Guo, Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis, Polymer 50 (2009), pp. 4189–4198. doi:10.1016/j.polymer.2009.06.062
  • A. Celebioglu and T. Uyar, Electrospinning of nanofibers from non-polymeric systems: Electrospun nanofibers from native cyclodextrins., J. Colloid Interface Sci. 404 (2013), pp. 1–7. doi:10.1016/j.jcis.2013.04.034
  • F. Trotta, M. Zanetti, and R. Cavalli, Cyclodextrin-based nanosponges as drug carriers., Beilstein J. Org. Chem. 8 (2012), pp. 2091–2099. doi:10.3762/bjoc.8.235
  • H. Liu and C. Tang, Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone, Polym. J. 39 (2007), pp. 65–72. doi:10.1295/polymj.PJ2006117
  • L. Bokobza and J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites, Express Polym. Lett. 6 (2012), pp. 601–608. doi:10.3144/expresspolymlett.2012.63
  • W.K. Son, J.H. Youk, and W.H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles, Carbohydr, Polym. 65 (2006), pp. 430–434.
  • K.P. Sambasevam, S. Mohamad, N.M. Sarih, and N.A. Ismail, Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine, Int. J. Mol. Sci. 14 (2013), pp. 3671–3682. doi:10.3390/ijms14023671
  • K. Umemoto, R.M. Wentzcovitch, S. Saito, and T. Miyake, Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett. 104 (2010), pp. 1255041–1255044. doi:10.1103/PhysRevLett.104.125504
  • J.T. Wang, C. Chen, E. Wang, and Y. Kawazoe, A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks, Sci. Rep. 4 (2014), pp. 1–5.
  • A. Maclachlan, T. Rath, U. Cappel, S. Dowland, H. Amenitsch, A.C. Knall, C. Buchmaier, G. Trimmel, J. Nelson, and S. Haque, Polymer/nanocrystal hybrid solar cells: Influence of molecular precursor design on film nanomorphology, charge generation and device performance, Adv. Funct. Mater. 25 (2015), pp. 409–420. doi:10.1002/adfm.201403108
  • T. Theivasanthi and M. Alagar, Nano sized copper particles by electrolytic synthesis and characterizations, Int. J. Phys. Sci. 6 (2011), pp. 3662–3671.