2,173
Views
11
CrossRef citations to date
0
Altmetric
Articles

Degradation patterns of silicone-based dielectric elastomers in electrical fields

, &
Pages 217-232 | Received 03 Jul 2017, Accepted 03 Sep 2017, Published online: 08 Sep 2017

References

  • R. Pelrine, R. Kornbluh, Q. Pei, and J.J.R. Pelrine, High-speed electrically actuated elastomers with strain greater than 100%, Science 287 (2000), pp. 836–839. doi:10.1126/science.287.5454.836
  • X. Zhao and Z. Suo, Theory of dielectric elastomers capable of giant deformation of actuation, Phys. Rev. Lett. 104 (2010), pp. 178302. doi:10.1103/PhysRevLett.104.178302
  • S. Michel, X.Q. Zhang, M. Wissler, C. Löwe, and G. Kovacs, A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators, Polym. Int. 59 (2010), pp. 391–399. doi:10.1002/pi.2751
  • S. Rosset, S. Araromi, S. Schlatter, and H. Shea, Fabrication process of silicone-based dielectric elastomer actuators, J. Visualized Exp. 2016 (2016), pp. 53423. doi:10.3791/53423
  • F.B. Madsen, A.E. Daugaard, S. Hvilsted, and A.L. Skov, The current state of silicone-based dielectric elastomer transducers, Macromol. Rapid Commun. 37 (2016), pp. 378–413. doi:10.1002/marc.201500576
  • P. Brochu and Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 31 (2010), pp. 10–36. doi:10.1002/marc.200900425
  • L. Maffli, S. Rosset, M. Ghilardi, F. Carpi, and H. Shea, Ultrafast all-polymer electrically tunable silicone lenses, Adv. Funct. Mater. 25 (2015), pp. 1656–1665. doi:10.1002/adfm.201403942
  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science 288 (2000), pp. 113–116. doi:10.1126/science.288.5463.113
  • R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, and T. Low, From boots to buoys: Promises and challenges of dielectric elastomer energy harvesting, SPIE Proc. 7976 (2011), pp. 797605-1–797605-19. doi:10.1117/12.882367
  • G. Ştiubianu, A. Soroceanu, C.-D. Varganici, C. Tugui, and M. Cazacu, Dielectric elastomers based on silicones filled with transitional metal complexes, Compos.Part. B: Eng. 93 (2016), pp. 236–243. doi:10.1016/j.compositesb.2016.03.005
  • L. Yu and A.L. Skov, Silicone rubbers for dielectric elastomers with improved dielectric and mechanical properties as a result of substituting silica with titanium dioxide, Int. J. Smart Nano Mater. 6 (2016), pp. 268–289. doi:10.1080/19475411.2015.1119216
  • G. Gallone, F. Carpi, D.D. Rossi, G. Levita, and A. Marchetti, Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate, Mater. Sci. Eng.: C 27 (2007), pp. 110–116. doi:10.1016/j.msec.2006.03.003
  • P. Mazurek, L. Yu, R. Gerhard, W. Wirges, and A.L. Skov, Glycerol as high-permittivity liquid filler in dielectric silicone elastomers, J. Appl. Polym. Sci. 133 (2016), pp. 44153. doi:10.1002/app.44153
  • F.B. Madsen, L. Yu, A.E. Daugaard, S. Hvilsted, and A.L. Skov, Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers, Polymer 55 (2014), pp. 6212–6219. doi:10.1016/j.polymer.2014.09.056
  • C. Tugui, S. Vlad, M. Iacob, C.D. Varganici, L. Pricop, and M. Cazacu, Interpenetrating poly(urethane-urea)-polydimethylsiloxane networks designed as active elements in electromechanical transducers, Polym. Chem. 7 (2016), pp. 2709–2719. doi:10.1039/C6PY00157B
  • C. Racles, M. Alexandru, A. Bele, V.E. Musteata, M. Cazacua, and D.M. Opris, Chemical modification of polysiloxanes with polar pendant groups by co-hydrosilylation, RSC Adv. 4 (2014), pp. 37620–37628. doi:10.1039/C4RA06955B
  • A.H.A. Razak, P. Szabo, and A.L. Skov, Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers, RSC Adv. 5 (2015), pp. 53054–53062. doi:10.1039/C5RA09708H
  • A.H.A. Razak and A.L. Skov, Silicone elastomers with covalently incorporated aromatic voltage stabilisers, RSC Adv. 7 (2017), pp. 468–477. doi:10.1039/C6RA25878F
  • D. Gatti, H. Haus, M. Matysek, B. Frohnapfel, C. Tropea, and H.F. Schlaak, The dielectric breakdown limit of silicone dielectric elastomer actuators, Appl. Phys. Lett. 104 (2014), pp. 052905. doi:10.1063/1.4863816
  • A. Troels, A. Kogler, R. Baumgartner, R. Kaltseis, C. Keplinger, R. Schwoediauer, I. Graz, and S. Bauer, Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers, Smart Mater. Struct. 22 (2013), pp. 104012. doi:10.1088/0964-1726/22/10/104012
  • X. Zhao, W. Hong, and Z. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B 76 (2007), pp. 134113. doi:10.1103/PhysRevB.76.134113
  • X. Zhao and Z. Suo, Method to analyze electromechanical stability of dielectric elastomers, Appl. Phys. Lett. 91 (2007), pp. 061921. doi:10.1063/1.2768641
  • K. Goswami, A.E. Daugaard, and A.L. Skov, Dielectric properties of ultraviolet cured poly(dimethyl siloxane) sub-percolative composites containing percolative amounts of multi-walled carbon nanotubes, RSC Adv. 5 (2015), pp. 12792–12799. doi:10.1039/C4RA14637A
  • B. Kussmaul, S. Risse, G. Kofod, R. Waché, M. Wegener, D.N. McCarthy, H. Krüger, and R. Gerhard, Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: Molecular grafting of organic dipoles to the macromolecular network, Adv. Funct. Mater. 21 (2011), pp. 4589–4594. doi:10.1002/adfm.201100884
  • V. Englund, R. Huuva, S.M. Gubanski, and T. Hjertberg, High efficiency voltage stabilizers for XLPE cable insulation, Polym. Degrad. Stab. 94 (2009), pp. 823–833. doi:10.1016/j.polymdegradstab.2009.01.020
  • A.H.A. Razak, L. Yu, and A.L. Skov, Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers, RSC Adv. 7 (2017), pp. 17848–17856. doi:10.1039/c7ra02620j
  • Y. Yamano, Roles of polycyclic compounds in increasing breakdown strength of LDPE film, IEEE Trans. Dielectr. Electr. Insul. 13 (2006), pp. 773–781. doi:10.1109/TDEI.2006.1667735
  • Y. Yamano and H. Endoh, Increase in breakdown strength of PE film by additives of azocompounds, IEEE Trans. Dielectr. Electr. Insul. 5 (1998), pp. 270–275. doi:10.1109/94.671957
  • G.C. Montanari and P.H.F. Morshuis, Space charge phenomenology in polymeric insulating materials, IEEE Trans. Dielectr. Electr. Insul. 12 (2005), pp. 754–767. doi:10.1109/TDEI.2005.1511101
  • F.B. Madsen, L. Yu, A.E. Daugaard, S. Hvilsted, and A.L. Skov, A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses, RSC Adv. 5 (2015), pp. 10254–10259. doi:10.1039/C4RA13511C
  • F.B. Madsen, L. Yu, P. Mazurek, and A.L. Skov, A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers, Smart Mater. Struct 25 (2016), pp. 075018. doi:10.1088/0964-1726/25/7/075018
  • M. Miwa, A. Takeno, K. Hara, and A. Watanable, Volume fraction and temperature dependence of mechanical properties of silicone rubber particulate/epoxy blends, Composites 26 (1995), pp. 371–377. doi:10.1016/S0010-4361(06)80136-9
  • P. Sommer-Larsen and A.L. Larsen, Materials for dielectric elastomer actuators, SPIE Proc. 5385 (2004), pp. 68–77. doi:10.1117/12.539500
  • T.G. McKay, E. Calius, and I.A. Anderson, Dielectric constant of 3M VHB: A parameter in dispute, SPIE Proceeding 7287 (2009), pp. 72870P-1–72870P-10. doi:10.1117/12.815821
  • F. Carpi, G. Gallone, F. Galantini, and D.D. Rossi, Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties, Adv. Funct. Mater. 18 (2008), pp. 235–241. doi:10.1002/adfm.200700757
  • G. Camino, S.M. Lomakin, and M. Lageard, Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms, Polymer 43 (2002), pp. 2011–2015. doi:10.1016/S0032-3861(01)00785-6.
  • S. Vudayagiri, M.D. Junker, and A.L. Skov, Factors affecting the surface and release properties of thin polydimethylsiloxane films, Polymer J. 45 (2013), pp. 871–878. doi:10.1038/pj.2012.227
  • M. Narisawa, Silicone resin applications for ceramic precursors and composites, Materials 3 (2010), pp. 3518–3536. doi:10.3390/ma3063518
  • J. Feng, Q. Zhang, Z. Tu, W. Tu, Z. Wan, M. Pan, and H. Zhang, Degradation of silicone rubbers with different hardness in various aqueous solutions, Polym. Degrad. Stab. 109 (2014), pp. 122–128. doi:10.1016/j.polymdegradstab.2014.07.011
  • S.Zakaria, P.H.F.Morshuis, M.Y.Benslimane, L.Yu, and A.L.Skov, The electrical breakdown strength of pre-stretched elastomers, with and without sample volume conservation, Smart Mater. Struct.24 (2015), pp. 055009. doi:10.1088/0964-1726/24/5/055009