1,380
Views
16
CrossRef citations to date
0
Altmetric
Article

Electro-mechanical analysis of composite and sandwich multilayered structures by shell elements with node-dependent kinematics

, &
Pages 1-33 | Received 11 Sep 2017, Accepted 03 Dec 2017, Published online: 02 Jan 2018

References

  • R.D. Mindlin, Forced thickness-shear and flexural vibrations of piezoelectric crystal plates, J. Appl. Phys 23 (1952), pp. 83–91. doi:10.1063/1.1701983
  • E.P. EerNisse, Variational method for electroelastic vibration analysis, IEEE Trans. Sonics Ultrasonics 14 (4) (1967), pp. 153–213. doi:10.1109/T-SU.1967.29431
  • H.F. Tiersten and R.D. Mindlin, Forced vibrations of piezoelectric crystal plates, Q. Appl. Math. 20 (2) (1962), pp. 107–126. doi:10.1090/qam/99964
  • H.F. Tiersten, Linear piezoelectric plate vibrations, New York Plenum Press, New York, 1969.
  • D.A. Saravanos and P.R. Heyliger, Mechanics and computational models for laminated piezoelectric beams, plates and shells, Appl. Mechanics Rev. 52 (10) (1999), pp. 305–324. doi:10.1115/1.3098918
  • S. Kapuria, A coupled zig-zag third-order theory for piezoelectric hybrid cross-ply plates, J. Appl. Mechanics 71 (2004), pp. 604–618. doi:10.1115/1.1767170
  • C. Ossadzow-David and M. Touratier, A multilayered piezoelectric shell theory, Compos. Sci. Technol 64 (2004), pp. 2121–2158. doi:10.1016/j.compscitech.2004.03.005
  • P. Heyliger, K.C. Pei, and D.A. Saravanos, Layerwise mechanics and finite element model for laminated piezoelectric shells, AIAA J. 34 (11) (1996), pp. 2353–2413. doi:10.2514/3.13401
  • D. Ballhause, M. D’Ottavio, B. Kroplin, and E. Carrera, A unified formulation to assess multilayered theories for piezoelectric plates, Comput. Struct 83 (15–16) (2005), pp. 1217–1235. doi:10.1016/j.compstruc.2004.09.015
  • M. D’Ottavio, D. Ballhause, B. Kroplin, and E. Carrera, Closed-form solutions for the free-vibration problem of multilayered piezoelectric shells, Comput. Struct 84 (2006), pp. 1506–1524. doi:10.1016/j.compstruc.2006.01.030
  • A. Benjeddou, J. Deu, and S. Letombe, Free vibrations of simply-supported piezoelectric adaptive plates: An exact sandwich formulation, Thin-Walled Struct 40 (2002), pp. 573–666. doi:10.1016/S0263-8231(02)00013-7
  • G.M. Kulikov and S.V. Plotnikova, Exact geometry piezoelectric solid-shell element based on the 7-parameter model, Mech. Adv. Mate. Struct 18 (2011), pp. 133–146. doi:10.1080/15376494.2010.496067
  • G.M. Kulikov and S.V. Plotnikova, A new approach to three-dimensional exact solutions for functionally graded piezoelectric laminated plates, Compo. Struct. 106 (2013), pp. 33–46. doi:10.1016/j.compstruct.2013.05.037
  • G. Rama, A 3-node piezoelectric shell element for linear and geometrically nonlinear dynamic analysis of smart structures, FACTA UNIVERSITATIS, Series: Mech. Eng 15 (1) (2017), pp. 31–44. doi:10.22190/FUME170225002R
  • D. Marinković and G. Rama, Co-rotational shell element for numerical analysis of laminated piezoelectric composite structures, Composites Part. B: Eng 125 (2017), pp. 144–156. doi:10.1016/j.compositesb.2017.05.061
  • T. Nestorović, S. Shabadi, D. Marinković, and M. Trajkov, Modeling of piezoelectric smart structures by implementation of a user defined shell finite element, FACTA UNIVERSITATIS, Series: Mech. Eng 11 (1) (2013), pp. 1–12.
  • D. Marinković, H. Köppe, and U. Gabbert, Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures, Smart Mater. Struct. 17 (1) (2008), pp. 015030. doi:10.1088/0964-1726/17/01/015030
  • S. Gohari, S. Sharifi, and Z. Vrcelj, A novel explicit solution for twisting control of smart laminated cantilever composite plates and beams using inclined piezoelectric actuators, Compo. Struct. 161 (2017), pp. 477–504. doi:10.1016/j.compstruct.2016.11.063
  • C.S. Rekatsinas and D.A. Saravanos, A cubic spline layerwise time domain spectral FE for guided waves simulation in laminated composite plate structures with physically modeled active piezoelectric sensors, Int. J. Solids. Struct 24 (1) (2017), pp. 176-191.
  • Babushka, I., Chandra, J., & Flaherty, J. E. (Eds.). Adaptive Computational Methods for PartialDifferential Equations Vol. 16. Siam, Proceedings, College Park, PA, (1983).
  • B.A. Szabo and I. Babuska, Finite Element Analysis, John Wiley & Sons, 1991.
  • K.J. Bathe, Finite element procedure, Prentice Hall, 1996.
  • D.M. Thompson and O.H. Jr Griffin, 2-D to 3-D global/local finite element analysis of cross-ply composite laminates, J. Reinforced Plas. Compos. 9 (1990), pp. 492–502. doi:10.1177/073168449000900506
  • K.M. Mao and C.T. Sun, A refined global-local finite element analysis method, Int. J. Numer. Methods Eng 32 (1991), pp. 29–43. doi:10.1002/(ISSN)1097-0207
  • J.D. Whitcomb and K. Woo, Application of iterative global/local finite element analysis. part 1: Linear analysis, Commun. Numer. Methods Eng 9 (9) (1993), pp. 745–756. doi:10.1002/cnm.1640090905
  • J.D. Whitcomb and K. Woo, Application of iterative global/local finite element analysis. Part 2: Geometrically non-linear analysis, Commun. Numer. Methods Eng 9 (9) (1993), pp. 757–766. doi:10.1002/cnm.1640090906
  • A. Pagani, S. Valvano, and E. Carrera, Analysis of laminated composites and sandwich structures by variable-kinematic MITC9 plate elements, J. Sandwich. Structures. Mater (2016). doi:10.1177/1099636216650988
  • E. Carrera, A. Pagani, and S. Valvano, Shell elements with through-the-thickness variable kinematics for the analysis of laminated composite and sandwich structures, Composites Part B 111 (2017), pp. 294–314. doi:10.1016/j.compositesb.2016.12.001
  • E. Carrera and S. Valvano, A variable kinematic shell formulation applied to thermal stress of laminated structures, J. Thermal Stresses 40 (2017), pp. 803–827. doi:10.1080/01495739.2016.1253439
  • E. Carrera and S. Valvano, Analysis of laminated composite structures with embedded piezoelectric sheets by variable kinematic shell elements, J. Intell. Mater. Syst. Struct 28 (20) (2017), pp. 2959–2987. doi:10.1177/1045389X17704913
  • F. Brezzi and L.D. Marini, The three-field formulation for elasticity problems, GAMM Mitteilungen 28 (2005), pp. 124–153. doi:10.1002/gamm.v28.2
  • E. Carrera, A. Pagani, and M. Petrolo, Use of Lagrange multipliers to combine 1D variable kinematic finite elements, Comput. Struct. 129 (2013), pp. 194–206. doi:10.1016/j.compstruc.2013.07.005
  • H. Ben Dhia, Multiscale mechanical problems: The Arlequin method, Comptes Rendus De L Academie Des Sciences Series IIB Mechanics Physics Astronomy 326 (12) (1998), pp. 899–904.
  • H. Ben Dhia, The Arlequin method as a flexible engineering tool, Int. J. Numer. Methods Eng 62 (11) (2005), pp. 1442–1462. doi:10.1002/nme.1229
  • H. Ben Dhia, Further insights by theoretical investigations of the multiscale Arlequin method, Int. J. Multiscale Computational Eng. 6 (3) (2008), pp. 215–232. doi:10.1615/IntJMultCompEng.v6.i3
  • H. Hu, S. Belouettar, M. Potier-Ferry, and E.M. Daya, Multi-scale modelling of sandwich structures using the Arlequin method. Part I: Linear modelling, Finite Elem. Anal. Des. 45 (1) (2008), pp. 37–51. doi:10.1016/j.finel.2008.07.003
  • H. Hu, S. Belouettar, M. Potier-Ferry, E.M. Daya, and A. Makradi, Multi-scale nonlinear modelling of sandwich structures using the Arlequin method, Finite Elem. Anal. Des. 92 (2) (2010), pp. 515–522.
  • F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu, Variable kinematic beam elements coupled via Arlequin method, Compo. Struct. 93 (2) (2011), pp. 697–708. doi:10.1016/j.compstruct.2010.08.009
  • F. Biscani, G. Giunta, S. Belouettar, E. Carrera, and H. Hu, Variable kinematic plate elements coupled via Arlequin method, Int. J. Numer. Methods Eng 91 (2012), pp. 1264–1290. doi:10.1002/nme.v91.12
  • F. Biscani, P. Nali, S. Belouettar, and E. Carrera, Coupling of hierarchical piezoelectric plate finite elements via Arlequin method, J. Intell. Mater. Syst. Struct 23 (7) (2012), pp. 749–764. doi:10.1177/1045389X12437885
  • E. Carrera, S. Valvano, and G.M. Kulikov, Multilayered plate elements with node-dependent kinematics for electro-mechanical problems, Int. J. Smart Nano Mater. (In Press). doi:10.1080/19475411.2017.1376722
  • E. Carrera, A. Pagani, and S. Valvano, Multilayered plate elements accounting for refined theories and node-dependent kinematics, Composites Part. B: Eng 114 (2017), pp. 189–210. doi:10.1016/j.compositesb.2017.01.022
  • S. Valvano and E. Carrera, Multilayered plate elements with node-dependent kinematics for the analysis of composite and sandwich structures, FACTA UNIVERSITATIS, Series: Mech. Eng 15 (1) (2017), pp. 1–30. doi:10.22190/FUME170315001V
  • K.J. Bathe and E. Dvorkin, A formulation of general shell elements - the use of mixed interpolation of tensorial components, Int. J. Numer. Methods Eng 22 (1986), pp. 697–722. doi:10.1002/nme.1620220312
  • K.J. Bathe and F. Brezzi, A simplified analysis of two plate bending elements-the MITC4 and MITC9 elements, Proceedings, Numerical Methods in Engineering: Theory and Applications, 1987.
  • K.J. Bathe, F. Brezzi, and S.W. Cho, The MICT7 and MITC9 plate bending elements, Comput. Struct 32 (3–4) (1989), pp. 797–814. doi:10.1016/0045-7949(89)90365-9
  • M.L. Bucalem and E. Dvorkin, Higher-order MITC general shell elements, Int. J. Numer. Methods Eng 36 (1993), pp. 3729–3754. doi:10.1002/nme.1620362109
  • M. Cinefra, S. Valvano, and E. Carrera, Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element, J. Thermal Stresses 39 (2) (2016), pp. 121–141. doi:10.1080/01495739.2015.1123591
  • M. Cinefra, S. Valvano, and E. Carrera, A layer-wise MITC9 finite element for the free-vibration analysis of plates with piezo-patches, Int. J. Smart Nano Mater. 6 (2) (2015), pp. 85–104. doi:10.1080/19475411.2015.1037377
  • E. Carrera, Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, Arch. Computational Methods Eng. 10 (3) (2003), pp. 215–296. doi:10.1007/BF02736224
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 1: Governing equations, AIAA J. 37 (9) (1999), pp. 1107–1116. doi:10.2514/2.821
  • E. Carrera, Multilayered shell theories accounting for layerwise mixed description, Part 2: Numerical evaluations, AIAA J. 37 (9) (1999), pp. 1117–1124. doi:10.2514/2.822
  • J.N. Reddy, An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compo. Struct. 25 (1993), pp. 21–35. doi:10.1016/0263-8223(93)90147-I
  • E. Carrera, S. Brischetto, and P. Nali, Plates and Shells for Smart Structures: Classical and Advanced Theories for Modeling and Analysis, John Wiley & Sons, 2011.
  • E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino, Finite Element Analysis of Structures through Unified Formulation, John Wiley & Sons, 2014.
  • N.N. Rogacheva, The Theory of Piezoelectric Shells and Plates, CRC Press, Boca Raton, 1994.
  • E. Carrera, S. Valvano, and G.M. Kulikov, Global-Local Analysis of Composite and Sandwich Multilayered Structures by Shell Elements with Node-Dependent Kinematics. To be submitted.
  • H. Kioua and S. Mirza, Piezoelectric induced bending and twisting of laminated composite shallow shells, Smart Mater. Struct. 9 (2000), pp. 476–484. doi:10.1088/0964-1726/9/4/310
  • F. Kpeky, F. Abed-Meraim, H. Boudaoud, and E.M. Daya, Linear and quadratic solidshell finite elements SHB8PSE and SHB20E for the modeling of piezoelectric sandwich structures, Mech. Adv. Mate. Struct (2017), pp. 1–20. doi:10.1080/15376494.2017.1285466.
  • C.T. Sun and X.D. Zhang, Use of thickness-shear mode in adaptive sandwich structures, Smart Mater. Struct. 4 (1995), pp. 202–206. doi:10.1088/0964-1726/4/3/007