1,787
Views
5
CrossRef citations to date
0
Altmetric
Article

Artificial muscles driven by the cooperative actuation of electrochemical molecular machines. Persistent discrepancies and challenges

ORCID Icon
Pages 125-143 | Received 23 Nov 2017, Accepted 23 Jan 2018, Published online: 05 Feb 2018

References

  • A. Huxley and R. Simmons, Proposed mechanism of force generation in striated muscle, Nature. 233 (1971), pp. 533. doi:10.1038/233533a0
  • K. Okamoto, H. Ueda, T. Shimada, K. Tamura, T. Kato, M. Tasaka, M.T. Morita, and I. Hara-Nishimura, Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton, Nat. Plants. 1 (2015), pp. 15031. doi:10.1038/nplants.2015.31
  • A. Kakugo, S. Sugimoto, J.P. Gong, and Y. Osada, Gel machines constructed from chemically cross-linked actins and myosins, Adv. Mater. 14 (2002), pp. 1124–1126. doi:10.1002/1521-4095(20020816)14:16<1124::AID-ADMA1124>3.0.CO;2-M.
  • E. Lin, H. Cantiello, and A. Novel, Method to study the electrodynamic behavior of actin-filaments - Evidence for cable-like properties of actin, Biophys. J. 65 (1993), pp. 1371–1378. doi:10.1016/S0006-3495(93)81188-3
  • J.-F. Joanny and J. Prost, Active gels as a description of the actin-myosin cytoskeleton, Hfsp J. 3 (2009), pp. 94–104. doi:10.2976/1.3054712
  • J.P. Sauvage and P. Gaspard (eds.), From Non-Covalent Assemblies to Molecular Machines, John Wiley & Sons, Weinheim, 2011.
  • V. Balzani, A. Credi, B. Ferrer, S. Silvi, and M. Venturi, Artificial Molecular Motors and Machines: Design Principles and Prototype Systems, in Molecular Machines, T.R. Kelly, ed., Springer Berlin Heidelberg, Berlin, 2005, pp. 1–27. Available at http://link.springer.com/chapter/10.1007/128_008. accessed August 19, 2013).
  • J.P. Sauvage, Transition metal-containing rotaxanes and catenanes in motion: Toward molecular machines and motors, Accounts Chem. Res. 31 (1998), pp. 611–619. doi:10.1021/ar960263r
  • B.L. Feringa and W.R. Browne, Molecular Switches: Volume 1+2, Edición: 2. Vollständig Überarbeitete Und Erweiterte Auflage, Wiley Vch Verlag Gmbh, Weinheim, Germany, 2011.
  • R. Bissell, E. Cordova, A. Kaifer, and J. Stoddart, A chemically and electrochemically switchable molecular shuttle, Nature. 369 (1994), pp. 133–137. doi:10.1038/369133a0
  • Wiley: The nature of the mechanical bond: from molecules to machines - Carson J. Bruns, J. Fraser Stoddart, (n.d.). Available at http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119044006.html. accessed November 22, 2016).
  • T.F. Otero and J. Rodriguez, Electrochemomechanical and electrochemopositioning devices - Artificial muscles, in Intrinsically Conducting Polymers : An Emerging Technology, M. Aldissi, ed., Kluwer Academic Publishers, Dordrecht, 1993, pp. 179–190.
  • T.F. Otero, Conducting polymers, electrochemistry, and biomimicking processes, in Modern Aspects of Electrochemistry, R.E. White, J.O. Bockris, and B.E. Conway, eds., Springer US, New York, 1999, pp. 307–434. Available at http://link.springer.com/chapter/10.1007/0-306-46917-0_3. accessed January 9, 2013).
  • T.F. Otero, Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy, J. Mater. Chem. 19 (2009), pp. 681–689. doi:10.1039/b809485c
  • T.F. Otero and J.G. Martinez, Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors, J. Mater. Chem. B. 1 (2013), pp. 26–38. doi:10.1039/c2tb00176d
  • T.F. Otero, Conducting Polymers: Bioinspired Intelligent Materials and Devices, Royal Society of Chemistry, Cambridge, 2015.
  • T.F. Otero, H.J. Grande, and J. Rodriguez, Reinterpretation of polypyrrole electrochemistry after consideration of conformational relaxation processes, J. Phys. Chem. B. 101 (1997), pp. 3688–3697. doi:10.1021/jp9630277
  • B.J. West, T.F. Otero, B. Shapiro, and E. Smela, Chronoamperometric study of conformational relaxation in PPy(DBS), J. Phys. Chem. B. 113 (2009), pp. 1277–1293. doi:10.1021/jp8058245
  • T.F. Otero, M. Alfaro, V. Martinez, M.A. Perez, and J.G. Martinez, Biomimetic structural electrochemistry from conducting polymers: Processes, charges, and energies. coulovoltammetric results from films on metals revisited, Adv Funct Mater. 23 (2013), pp. 3929–3940. doi:10.1002/adfm.201203502
  • T.F. Otero and J.G. Martinez, Structural electrochemistry: Conductivities and ionic content from rising reduced polypyrrole films, Adv Funct Mater. 24 (2014), pp. 1259–1264. doi:10.1002/adfm.201302514
  • K. Aoki, J. Cao, and Y. Hoshino, Logarithmic relaxation of electrochemical insulating-to-conducting conversion at polyaniline films: Interpretation by electric percolation, Electrochim. Acta. 39 (1994), pp. 2291–2297. doi:10.1016/0013-4686(94)E0181-X
  • M. Kalaji, L. Peter, L. Abrantes, and J. Mesquita, Microelectrode studies of fast switching in polyaniline films, J. Electroanal. Chem. 274 (1989), pp. 289–295. doi:10.1016/0022-0728(89)87051-2
  • A.R. Hillman, S.J. Daisley, and S. Bruckenstein, Ion and solvent transfers and trapping phenomena during n-doping of PEDOT films, Electrochim. Acta. 53 (2008), pp. 3763–3771. doi:10.1016/j.electacta.2007.10.062
  • C. Odin and M. Nechtschein, Slow relaxation in conducting polymers - Influence of the wait potential, Synth. Met. 55 (1993), pp. 1287–1292. doi:10.1016/0379-6779(93)90239-S
  • G. Inzelt, Conducting Polymers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. Available at http://link.springer.com/10.1007/978-3-642-27621-7. accessed May 28, 2015).
  • K. Mukai, K. Asaka, K. Hata, T. Fernandez Otero, and H. Oike, High-speed carbon nanotube actuators based on an oxidation/reduction reaction, Chemistry-A Eur. J. 17 (2011), pp. 10965–10971. doi:10.1002/chem.201003641
  • P. Gimenez, K. Mukai, K. Asaka, K. Hata, H. Oike, and T.F. Otero, Capacitive and faradic charge components in high-speed carbon nanotube actuator, Electrochim. Acta. 60 (2012), pp. 177–183. doi:10.1016/j.electacta.2011.11.032
  • D.K. Samarakoon and X.-Q. Wang, Twist-boat conformation in graphene oxides, Nanoscale. 3 (2011), pp. 192–195. doi:10.1039/c0nr00710b
  • B.J. Cox, D. Baowan, W. Bacsa, and J.M. Hill, Relating elasticity and graphene folding conformation, RSC Adv. 5 (2015), pp. 57515–57520. doi:10.1039/c5ra08276e
  • J.G. Martinez, S. Aznar-Cervantes, A. Abel Lozano-Pérez, J.L. Cenis, and T.F. Otero, Graphene adsorbed on silk-fibroin meshes: Biomimetic and reversible conformational movements driven by reactions, Electrochim. Acta. 209 (2016), pp. 521–528. doi:10.1016/j.electacta.2016.05.126
  • R.D. Yamaletdinov and Y.V. Pershin, Finding stable graphene conformations from pull and release experiments with molecular dynamics (vol 7, 42356, 2017), Sci Rep. 7 (2017), pp. 44630. doi:10.1038/srep44630
  • T. Otero, E. Angulo, J. Rodriguez, and C. Santamaria, Electrochemomechanical properties from a bilayer: Polypyrrole/non-conducting and flexible material—Artificial muscle, J. Electroanalytical Chem. 341 (1992), pp. 369–375. doi:10.1016/0022-0728(92)80495-P
  • Q. Pei and O. Inganas, Conjugated polymers and the bending cantilever method - Electrical muscles and smart devices, Adv. Mater. 4 (1992), pp. 277–278. doi:10.1002/adma.19920040406
  • K. Kaneto, M. Kaneko, Y. Min, A. Macdiarmid, and A. Muscle, Electromechanical actuators using polyaniline films, Synth. Met. 71 (1995), pp. 2211–2212. doi:10.1016/0379-6779(94)03226-V
  • R.H. Baughman, Conducting polymer artificial muscles, Synth. Met. 78 (1996), pp. 339–353. doi:10.1016/0379-6779(96)80158-5
  • T. Mirfakhrai, J.D.W. Madden, and R.H. Baughman, Polymer artificial muscles, Mater. Today. 10 (2007), pp. 30–38. doi:10.1016/S1369-7021(07)70048-2
  • E. Smela, O. Inganäs, Q. Pei, and I. Lundström, Electrochemical muscles: Micromachining fingers and corkscrews, Advanced Mater. 5 (1993), pp. 630–632. doi:10.1002/adma.19930050905
  • E. Smela and N. Gadegaard, Volume change in polypyrrole studied by atomic force microscopy, J. Phys. Chem. B. 105 (2001), pp. 9395–9405. doi:10.1021/jp004126u
  • E. Smela, Microfabrication of PPy microactuators and other conjugated polymer devices, J. Micromech. Microeng. 9 (1999), pp. 1–18. doi:10.1088/0960-1317/9/1/001
  • G.G. Wallace, P.R. Teasdale, G.M. Spinks, and L.A.P. Kane-Maguire, Conductive Electroactive Polymers: Intelligent Materials Systems, 2nd ed., CRC Press, Boca Raton, 2002.
  • B. Gaihre, G. Alici, G.M. Spinks, and J.M. Cairney, Pushing the limits for microactuators based on electroactive polymers, J. Microelectromechanical Syst. 21 (2012), pp. 574–585. doi:10.1109/JMEMS.2012.2184084
  • G. Alici, V. Devaud, P. Renaud, and G. Spinks, Conducting polymer microactuators operating in air, J. Micromech. Microeng. 19 (2009), pp. 25017. doi:10.1088/0960-1317/19/2/025017
  • K. Kaneto, Research trends of soft actuators based on electroactive polymers and conducting polymers, J. Phys.: Conf. Ser. 704 (2016), pp. 12004. doi:10.1088/1742-6596/704/1/012004
  • T. Otero, J. Martinez, and J. Arias-Pardilla, Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces, Electrochim. Acta 84 (2012), pp. 112–128. doi:10.1016/j.electacta.2012.03.097
  • A.A. Entezami and B. Massoumi, Artificial muscles, biosensors and drug delivery systems based on conducting polymers: A review, Iran, Polym. J. 15 (2006), pp. 13–30.
  • P. Chiarelli, D. Derossi, A. Dellasanta, and A. Mazzoldi, Doping-induced volume change in a Pi-conjugated conducting polymer, Polym. Gels Netw. 2 (1994), pp. 289–297. doi:10.1016/0966-7822(94)90013-2
  • D. Derossi and P. Chiarelli, Biomimetic macromolecular actuators, in Macro-Ion Characterization: From Dilute Solutions to Complex Fluids, K.S. Schmitz, ed., Amer Chemical Soc, Washington, 1994, pp. 517–530.
  • F. Vidal, C. Plesse, D. Teyssie, and C. Chevrot, Long-life air working conducting semi-IPN/ionic liquid based actuator, Synth. Met. 142 (2004), pp. 287–291. doi:10.1016/j.synthmet.2003.10.005
  • N. Festin, A. Maziz, C. Plesse, D. Teyssie, C. Chevrot, and F. Vidal, Robust solid polymer electrolyte for conducting IPN actuators, Smart Mater. Struct. 22 (2013), pp. 104005. doi:10.1088/0964-1726/22/10/104005
  • C. Plesse, F. Vidal, H. Randriamahazaka, D. Teyssie, and C. Chevrot, Synthesis and characterization of conducting interpenetrating polymer networks for new actuators, Polymer. 46 (2005), pp. 7771–7778. doi:10.1016/j.polymer.2005.03.103
  • J.M. Sansinena, J.B. Gao, and H.L. Wang, High-performance, monolithic polyaniline electrochemical actuators, Adv. Funct. Mater. 13 (2003), pp. 703–709. doi:10.1002/adfm.200304347
  • C. Immerstrand, K. Holmgren-Peterson, K.-E. Magnusson, E. Jager, M. Krogh, M. Skoglund, A. Selbing, and O. Inganäs, Conjugated-polymer micro- and milliactuators for biological applications, MRS Bull. 27 (2002), pp. 461–464. doi:10.1557/mrs2002.146
  • E.W.H. Jager, E. Smela, and O. Inganas, Microfabricating conjugated polymer actuators, Science. 290 (2000), pp. 1540–1545. doi:10.1126/science.290.5496.1540
  • E.W. Jager, E. Smela, and O. Inganäs, On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes, Sens. Actuator B-Chem. 56 (1999), pp. 73–78. doi:10.1016/S0925-4005(99)00159-8
  • G.Y. Han and G.Q. Shi, Electrochemical actuator based on single-layer polypyrrole film, Sens. Actuator B-Chem. 113 (2006), pp. 259–264. doi:10.1016/j.snb.2005.02.055
  • T. Shoa, J.D.W. Madden, T. Mirfakhrai, G. Alici, G.M. Spinks, and G.G. Wallace, Electromechanical coupling in polypyrrole sensors and actuators, Sens. Actuators A- Phys. 161 (2010), pp. 127–133. doi:10.1016/j.sna.2010.04.024
  • M.E. Piyasena, R. Newby, T.J. Miller, B. Shapiro, and E. Smela, Electroosmotically driven microfluidic actuators, Sens. Actuator B-Chem. 141 (2009), pp. 263–269. doi:10.1016/j.snb.2009.05.014
  • Y. Wu, G. Alici, G.M. Spinks, and G.G. Wallace, Fast trilayer polypyrrole bending actuators for high speed applications, Synth Met. 156 (2006), pp. 1017–1022. doi:10.1016/j.synthmet.2006.06.022
  • Q. Yao, G. Alici, and G.M. Spinks, Feedback control of tri-layer polymer actuators to improve their positioning ability and speed of response, Sens. Actuators A-Phys. 144 (2008), pp. 176–184. doi:10.1016/j.sna.2008.01.005
  • H. Okuzaki, T. Kuwabara, K. Funasaka, and T. Saido, Humidity-sensitive polypyrrole films for electro-active polymer actuators, Adv. Funct. Mater. 23 (2013), pp. 4400–4407. doi:10.1002/adfm.201203883
  • R. Kiefer, A. Kesküla, J.G. Martinez, G. Anbarjafari, J. Torop, and T.F. Otero, Interpenetrated triple polymeric layer as electrochemomechanical actuator: Solvent influence and diffusion coefficient of counterions, Electrochim. Acta. 230 (2017), pp. 461–469. doi:10.1016/j.electacta.2017.01.191
  • F. Greco, V. Domenici, A. Desii, E. Sinibaldi, B. Zupancic, B. Zalar, B. Mazzolai, and V. Mattoli, Liquid single crystal elastomer/conducting polymer bilayer composite actuator: Modelling and experiments, Soft Matter. 9 (2013), pp. 11405–11416. doi:10.1039/c3sm51153g
  • M. Fuchiwaki, T.F. Otero, and K. Tanaka, Movement characteristics of bimorph conducting polymer actuators, Red. 60 (n.d.), pp. 60deg.
  • R. Kiefer, J.G. Martinez, A. Kesküla, G. Anbarjafari, A. Aabloo, and T.F. Otero, Polymeric actuators: Solvents tune reaction-driven cation to reaction-driven anion actuation, Sens. Actuators B-Chem. 233 (2016), pp. 328–336. doi:10.1016/j.snb.2016.04.090
  • Y. Osada and D.E. De Rossi (eds.), Polymer Sensors and Actuators, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. Available at http://link.springer.com/10.1007/978-3-662-04068-3. accessed May 18, 2016).
  • B. Qi, W. Lu, and B.R. Mattes, Strain and energy efficiency of polyaniline fiber electrochemical actuators in aqueous electrolytes, J. Phys. Chem. B. 108. (2004), pp. 6222–6227. doi:10.1021/jp031092s
  • K. Tominaga, K. Hamai, B. Gupta, Y. Kudoh, W. Takashima, R. Prakash, and K. Kaneto, Suppression of electrochemical creep by cross-link in polypyrrole soft actuators, in 9th International Conference on Nano-Molecular Electronics, M. Iwamoto, K. Kaneto, A. Otomo, and M. Onoda, eds., Elsevier Science Bv, Amsterdam, 2011, pp. 143–146.
  • T. Okamoto, Y. Kato, K. Tada, and M. Onoda, Actuator based on doping/undoping-induced volume change in anisotropic polypyrrole film, Thin Solid Films. 393 (2001), pp. 383–387. doi:10.1016/S0040-6090(01)01124-5
  • X. Wang and E. Smela, Color and volume change in PPy(DBS), J. Phys. Chem. C. 113 (2009), pp. 359–368. doi:10.1021/jp802937v
  • P.R. Singh, S. Mahajan, S. Raiwadec, and A.Q. Contractor, EC-AFM investigation of reversible volume changes with electrode potential in polyaniline, J. Electroanal. Chem. 625 (2009), pp. 16–26. doi:10.1016/j.jelechem.2008.10.005
  • M.F. Suarez and R.G. Compton, In situ atomic force microscopy study of polypyrrole synthesis and the volume changes induced by oxidation and reduction of the polymer, J. Electroanal. Chem. 462 (1999), pp. 211–221. doi:10.1016/S0022-0728(98)00414-8
  • M. Pyo and C.H. Kwak, In situ scanning tunneling nuicroscopy study on volume change of polypyrrole/poly (styrene sulfonate), Synth. Met. 150 (2005), pp. 133–137. doi:10.1016/j.synthmet.2005.01.022
  • D.S.H. Charrier, R.A.J. Janssen, and M. Kemerink, Large electrically induced height and volume changes in poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) thin films, Chem. Mat. 22 (2010), pp. 3670–3677. doi:10.1021/cm100452a
  • L. Lizarraga, E.M. Andrade, M.I. Florit, and F.V. Molina, Quasi-equilibrium volume changes of polyaniline films upon redox switching. Formal potential distribution and configurational modeling, J. Phys. Chem. B. 109 (2005), pp. 18815–18821. doi:10.1021/jp054052s
  • E. Smela and N. Gadegaard, Surprising volume change in PPy(DBS): An atomic force microscopy study, Adv. Mater. 11 (1999), pp. 953. doi:10.1002/(SICI)1521-4095(199908)11:11<953::AID-ADMA953>3.0.CO;2-H
  • L. Lizarraga, E.M. Andrade, and F.V. Molina, Swelling and volume changes of polyaniline upon redox switching, J. Electroanal. Chem. 561 (2004), pp. 127–135. doi:10.1016/j.jelechem.2003.07.026
  • E.M. Andrade, F.V. Molina, M.I. Florit, and D. Posadas, Volume changes of poly(2-methylaniline) upon redox switching - Anion and relaxation effects, Electrochemical and Solid State Lett, Vol. 3, 2000, pp. 504–507. doi:10.1149/1.1391192
  • Y. Bar-Cohen (ed.), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Spie Press Book, Bellingham, 2004. Available at http://spie.org/x648.html?product_id=547465. accessed July 1, 2013).
  • O. Kim, H. Kim, U.H. Choi, and M.J. Park, One-volt-driven superfast polymer actuators based on single-ion conductors, Nat. Commun. 7 (2016), pp. 13576. doi:10.1038/ncomms13576
  • L. Lu, J. Liu, Y. Hu, Y. Zhang, H. Randriamahazaka, and W. Chen, Highly stable air working bimorph actuator based on a graphene nanosheet/carbon nanotube hybrid electrode, Adv. Mater. 24 (2012), pp. 4317–4321. doi:10.1002/adma.201201320
  • L. Kong and W. Chen, Carbon nanotube and graphene-based bioinspired electrochemical actuators, Adv. Mater. 26 (2014), pp. 1025–1043. doi:10.1002/adma.201303432
  • P. Metz, G. Alici, and G.M. Spinks, A finite element model for bending behaviour of conducting polymer electromechanical actuators, Sens. Actuators A-Phys. 130–131 (2006), pp. 1–11. doi:10.1016/j.sna.2005.12.010
  • G. Alici, An effective modelling approach to estimate nonlinear bending behaviour of cantilever type conducting polymer actuators, Sens. Actuator B-Chem. 141 (2009), pp. 284–292. doi:10.1016/j.snb.2009.06.017
  • G. Alici, B. Mui, and C. Cook, Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications, Sens. Actuator A-Phys. 126 (2006), pp. 396–404. doi:10.1016/j.sna.2005.10.020
  • S. John, G. Alici, and C. Cook, Frequency response of polypyrrole trilayer actuator displacement, in Electroactive Polymer Actuators and Devices (Eapad) 2008, Y. Bar-Cohen, ed., Spie-Int Soc Optical Engineering, Bellingham, 2008.
  • X. Wang, G. Alici, and X. Tan, Modeling and inverse feedforward control for conducting polymer actuators with hysteresis, Smart Mater. Struct. 23 (2014), pp. 25015. doi:10.1088/0964-1726/23/2/025015
  • S.W. John, G. Alici, and C.D. Cook, Validation of resonant frequency model for polypyrrole trilayer actuators, IEEE-ASME Trans. Mechatron. 13 (2008), pp. 401–409. doi:10.1109/TMECH.2008.2000883
  • M. Farajollahi, A. Usgaocar, Y. Dobashi, V. Woehling, C. Plesse, F. Vidal, F. Sassani, and J.D.W. Madden, Nonlinear two-dimensional transmission line models for electrochemically driven conducting polymer actuators, IEEE-ASME Trans. Mechatron. 22 (2017), pp. 705–716. doi:10.1109/TMECH.2016.2550003
  • J.D.W. Madden, P.G.A. Madden, and I.W. Hunter, Polypyrrole actuators: Modeling and performance, in Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, Y. BarCohen, ed., Spie-Int Soc Optical Engineering, Bellingham, 2001, pp. 72–83.
  • M. Bentefrit, S. Grondel, C. Soyer, A. Fannir, E. Cattan, J.D. Madden, T.M.G. Nguyen, C. Plesse, and F. Vidal, Linear finite-difference bond graph model of an ionic polymer actuator, Smart Mater. Struct. 26 (2017), pp. 95055. doi:10.1088/1361-665X/aa7f7f
  • M.Y. Coskun, C. Sancak, M. Itik, and G. Alici, Hybrid force and position control of a conducting tri-layer electro-active polymer actuator, Trans. Inst. Meas. Control. 39 (2017), pp. 288–296. doi:10.1177/0142331216659537
  • R. Mutlu, G. Alici, W. Li, and A. Soft Mechatronic, Microstage mechanism based on electroactive polymer actuators, IEEE-ASME Trans. Mechatron. 21 (2016), pp. 1467–1478. doi:10.1109/TMECH.2015.2502597
  • M. Itik, E. Sahin, and M.S. Ayas, Fractional order control of conducting polymer artificial muscles, Expert Syst. Appl. 42 (2015), pp. 8212–8220. doi:10.1016/j.eswa.2015.06.033
  • N. Khalili, H.E. Naguib, and R.H. Kwon, Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators, Smart Mater. Struct. 23 (2014), pp. 105022. doi:10.1088/0964-1726/23/10/105022
  • A.D. Price and H.E. Naguib, A unified multiphysics finite element model of the polypyrrole trilayer actuation mechanism, J. Intell. Mater. Syst. Struct. 24 (2013), pp. 548–558. doi:10.1177/1045389X12464530
  • N. Khalili, H.E. Naguib, and R.H. Kwon, On the multiobjective optimization of conjugated polymer based trilayer actuators, Synth. Met. 197 (2014), pp. 34–47. doi:10.1016/j.synthmet.2014.07.024
  • A.A.A. Moghadam, K. Torabi, M. Moavenian, and R. Davoodi, Dynamic modeling and robust control of an L-shaped microrobot based on fast trilayer polypyrrole-bending actuators, J. Intell. Mater. Syst. Struct. 24 (2013), pp. 484–498. doi:10.1177/1045389X12463619
  • M. Christophersen, B. Shapiro, and E. Smela, Characterization and modeling of PPy bilayer microactuators, Sens. Actuators B-Chem. 115 (2006), pp. 596–609. doi:10.1016/j.snb.2005.10.023
  • A. DellaSanta, D. DeRossi, and A. Mazzoldi, Characterization and modelling of a conducting polymer muscle-like linear actuator, Smart Mater. Struct. 6 (1997), pp. 23–34. doi:10.1088/0964-1726/6/1/003
  • X. Wang, B. Shapiro, and E. Smela, Development of a model for charge transport in conjugated polymers, J. Phys. Chem. C. 113 (2009), pp. 382–401. doi:10.1021/jp802941m
  • P. Du, X. Lin, and X. Zhang, A multilayer bending model for conducting polymer actuators, Sens. Actuator A-Phys. 163 (2010), pp. 240–246. doi:10.1016/j.sna.2010.06.002
  • V. Venugopal, H. Zhang, R. Northcutt, and V.B. Sundaresan, A thermodynamic chemomechanical constitutive model for conducting polymers, Sens. Actuator B-Chem. 201 (2014), pp. 293–299. doi:10.1016/j.snb.2014.04.09
  • T. Otero and J. Rodriguez, Electrochemomechanical and Electrochemopositioning Devices - Artificial Muscles, 1993. in Intrinsically Conducting Polymers: An Emerging Tecnology, Ed. by M. Aldissi, NATO ASI Series, Kluwer Academic Publishers, London, Vol 246.
  • T.F. Otero and J. Arias-Pardilla, Electrochemomechanical devices: Artificial muscles, electropolymerization: Concepts, Mater. Appl. (2010), pp. 241–272.
  • L.L. Valero, T.F. Otero, and J.G. Martinez, Polymeric artificial muscles are linear faradaic motors, in: Key engineering materials, 2015 pp. 137–144. Available at http://www.scientific.net/KEM.644.137. (accessed September 17, 2015).
  • T.F. Otero and M. Broschart, Polypyrrole artificial muscles: A new rhombic element. Construction and electrochemomechanical characterization, J. Appl. Electrochemistry. 36 (2006), pp. 205–214. doi:10.1007/s10800-005-9048-0
  • M. Fuchiwaki, J.G. Martinez, and T.F. Otero, Polypyrrole asymmetric bilayer artificial muscle: driven reactions, cooperative actuation, and osmotic effects, Adv Funct Mater 25 (2015), pp. 1535–1541. doi:10.1002/adfm.201404061
  •  T.F. Otero and J.G. Martinez, Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling.Progress in Polymer Science. 44 (2015), pp. 62–78. doi:10.1016/j.progpolymsci.2014.09.002
  • T.F. Otero and J.G. Martinez, Ionic exchanges, structural movements and driven reactions in conducting polymers from bending artificial muscles, Sens. Actuators B Chem. 199 (2014), pp. 27–30. doi:10.1016/j.snb.2014.03.053
  • T.F. Otero and J.G. Martinez, Structural and biomimetic chemical kinetics: Kinetic magnitudes include structural information, Adv Funct Mater. 23 (2013), pp. 404–416. doi:10.1002/adfm.201200719
  • T.F. Otero, Reactions driving conformational movements (molecular motors) in gels: Conformational and structural chemical kinetics, Phys. Chem. Chem. Phys. 19 (2017), pp. 1718–1730. doi:10.1039/C6CP06735B
  • S.D. Deshpande, J. Kim, and S.-R. Yun, Studies on conducting polymer electroactive paper actuators: Effect of humidity and electrode thickness, Smart Mater. Struct. 14 (2005), pp. 876–880. doi:10.1088/0964-1726/14/4/048
  • M.V. Kulkarni, A.K. Viswanath, R.C. Aiyer, and P.K. Khanna, Synthesis, characterization, and morphology of p-toluene sulfonic acid-doped polyaniline: a material for humidity sensing application, J. Polym. Sci. Pt. B-Polym. Phys. 43 (2005), pp. 2161–2169. doi:10.1002/polb.20503
  • H. Zhang, L. Li, M. Moeller, X. Zhu, J.J.H. Rueda, M. Rosenthal, and D.A. Ivanov, From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes, Adv. Mater. 25 (2013), pp. 3543–3548. doi:10.1002/adma.201205097
  • M.T.S. Chani, K.S. Karimov, F.A. Khalid, and S.A. Moiz, Polyaniline based impedance humidity sensors, Solid State Sci. 18 (2013), pp. 78–82. doi:10.1016/j.solidstatesciences.2013.01.005
  • S. Kotresh, Y.T. Ravikiran, H.G.R. Prakash, and S.C.V. Kumari, Polyaniline-Titanium dioxide composite as humidity sensor at room temperature, Nanosyst.-Phys. Chem. Math. 7 (2016), pp. 732–739. doi:10.17586/2220-8054-2016-7-4-732-739
  • A. Macagnano, V. Perri, E. Zampetti, A. Bearzotti, and F. De Cesare, Humidity effects on a novel eco-friendly chemosensor based on electrospun PANi/PHB nanofibres, Sens. Actuator B-Chem. 232 (2016), pp. 16–27. doi:10.1016/j.snb.2016.03.055
  • N. Razza, B. Blanchet, A. Lamberti, F.C. Pirri, J.-M. Tulliani, L.D. Bozano, and M. Sangermano, UV-printable and flexible humidity sensors based on conducting/insulating semi-interpenetrated polymer networks, Macromol. Mater. Eng. 302 (2017), pp. 1700161. doi:10.1002/mame.201700161
  • T. Zhou, X. Xie, J. Cai, L. Yin, and W. Ruan, Preparation of poly(o-toluidine)/TiO2 nanocomposite films and application for humidity sensing, Polym. Bull. 73 (2016), pp. 621–630. doi:10.1007/s00289-015-1509-y
  • S.D. Zor and H. Cankurtaran, Impedimetric humidity sensor based on nanohybrid composite of conducting poly(diphenylamine sulfonic acid), J. Sens. (2016), pp. 5479092. doi:10.1155/2016/5479092
  • J.G. Martinez, T.F. Otero, and E.W.H. Jager, Effect of the electrolyte concentration and substrate on conducting polymer actuators, Langmuir. 30 (2014), pp. 3894–3904. doi:10.1021/la404353z
  • J.G. Martinez, T.F. Otero, and E.W.H. Jager, Electrochemo-dynamical characterization of polypyrrole actuators coated on gold electrodes, Phys. Chem. Chem. Phys. (2016). doi:10.1039/C5CP05841D
  • M. Fuchiwaki, J.G. Martinez, and T.F. Otero, Asymmetric bilayer muscles. Cooperative and antagonist actuation, Electrochim. Acta. 195 (2016), pp. 9–18. doi:10.1016/j.electacta.2016.02.104
  • L. Valero, J.G. Martinez, and T.F. Otero, Creeping and structural effects in Faradaic artificial muscles, J Solid State Electrochem. 19 (2015), pp. 2683–2689. doi:10.1007/s10008-015-2775-1
  • A. Simaite, A. Delagarde, B. Tondu, P. Soueres, E. Flahaut, and C. Bergaud, Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles, Nanotechnology. 28 (2017), pp. 25502. doi:10.1088/0957-4484/28/2/025502
  • K. Kaneto, T. Shinonome, K. Tominaga, and W. Takashima, Electrochemical creeping and actuation of polypyrrole in ionic liquid, Jpn. J. Appl. Phys. 50 (2011), pp. 91601. doi:10.1143/JJAP.50.091601
  • M. Fuchiwaki, J.G. Martinez, and T. Fernandez Otero, Asymmetric bilayer muscles: cooperative actuation, dynamic hysteresis, and creeping in NaPF6 aqueous solutions, ChemistryOpen. 5 (2016), pp. 369–374. doi:10.1002/open.201600012
  • J.D. Madden, D. Rinderknecht, P.A. Anquetil, and I.W. Hunter, Creep and cycle life in polypyrrole actuators, Sens. Actuator A-Phys. 133 (2007), pp. 210–217. doi:10.1016/j.sna.2006.03.016
  • L. Bay, T. Jacobsen, S. Skaarup, and K. West, Mechanism of actuation in conducting polymers: Osmotic expansion, J. Phys. Chem. B. 105 (2001), pp. 8492–8497. doi:10.1021/jp003872w
  • V.K. Sachan, A.K. Singh, K. Jahan, S.G. Kumbar, R.K. Nagarale, and P.K. Bhattacharya, Development of redox-conducting polymer electrodes for non-gassing electro-osmotic pumps: a novel approach, J. Electrochem. Soc. 161 (2014), pp. H3029–H3034. doi:10.1149/2.0071413jes
  • T.F. Otero, Coulovoltammetric and dynamovoltammetric responses from conducting polymers and bilayer muscles as tools to identify reaction-driven structural changes, A Review, Electrochimica Acta. 212 (2016), pp. 440–457. doi:10.1016/j.electacta.2016.07.004
  • T. Otero, J. Martínez, and B. Zaifoglu, Using reactive artificial muscles to determine water exchange during reactions, Smart Mater. Struct. 22 (2013), pp. 104019. doi:10.1088/0964-1726/22/10/104019
  • L. Valero, T.F. Otero, and J.G. Martínez, Exchanged cations and water during reactions in polypyrrole macroions from artificial muscles, ChemPhysChem 15 (2014), pp. 293–301. doi:10.1002/cphc.201300878
  • T.F. Otero and J.G. Martinez, Artificial muscles: A tool to quantify exchanged solvent during biomimetic reactions, Chem. Mater. 24 (2012), pp. 4093–4099. doi:10.1021/cm302847r