5,682
Views
54
CrossRef citations to date
0
Altmetric
Article

A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control

, & ORCID Icon
Pages 144-213 | Received 14 Nov 2017, Accepted 04 Feb 2018, Published online: 01 Mar 2018

References

  • L. Hines, K. Petersen, G.Z. Lum, and M. Sitti, Soft actuators for small-scale robotics, Advan. Mater. 29 (2017), pp. 1603483.
  • E.W. Jager, O. Ingan¨As, and I. Lundstr¨Om, Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation, Science 288 (5475) (2000), pp. 2335–2338.
  • E.W. Jager, E. Smela, and O. Ingan¨As, Microfabricating conjugated polymer actuators, Science 290 (5496) (2000), pp. 1540–1545.
  • E. Malone and H. Lipson, Freeform fabrication of ionomeric polymer-metal composite actuators, Rapid Prot. J. 12 (5) (2006), pp. 244–253.
  • G.H. Kwon, J.Y. Park, J.Y. Kim, M.L. Frisk, D.J. Beebe, and S.-H. Lee, Biomimetic soft multifunctional miniature aquabots, Small 4 (12) (2008), pp. 2148–2153.
  • C.L. Van Oosten, C.W. Bastiaansen, and D.J. Broer, Printed artificial cilia from liquid-crystal network actuators modularly driven by light, Nat. Mater. 8 (8) (2009), pp. 677.
  • D. Morales, E. Palleau, M.D. Dickey, and O.D. Velev, Electro-actuated hydrogel walkers with dual responsive legs, Soft Matt. 10 (9) (2014), pp. 1337–1348.
  • J.D. Carrico, N.W. Traeden, M. Aureli, and K.K. Leang, Fused filament 3D printing of ionic polymer-metal composites (IPMCs), Smart Mater. Struct 24 (12) (2015), pp. 125021.
  • Q. Ge, A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, and M.L. Dunn, Multimaterial 4D printing with tailorable shape memory polymers, Sci. Rep. 6 (2016), pp. 31110.
  • Y. Mao, Z. Ding, C. Yuan, S. Ai, M. Isakov, J. Wu, T. Wang, M.L. Dunn, and H.J. Qi, 3D printed reversible shape changing components with stimuli responsive materials, Sci. Rep. 6 (2016), pp. 24761.
  • J.D. Carrico, K.J. Kim, and K.K. Leang, 3D-printed ionic polymer-metal composite soft crawling robot, IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017.
  • D. Rus and M.T. Tolley, Design, fabrication and control of soft robots, Nature 521 (7553) (2015), pp. 467.
  • M.T. Tolley, R.F. Shepherd, B. Mosadegh, K.C. Galloway, M. Wehner, M. Karpelson, R.J. Wood, and G.M. Whitesides, A resilient, untethered soft robot, Soft Robotics 1 (3) (2014), pp. 213–223.
  • A.A.A. Moghadam, A. Kouzani, K. Torabi, A. Kaynak, and M. Shahinpoor, Development of a novel soft parallel robot equipped with polymeric artificial muscles, Smart Mater. Struct. 24 (3) (2015), pp. 035017.
  • H. Wang, J. Chen, H.Y. Lau, and H. Ren, Motion planning based on learning from demonstration for multiple-segment flexible soft robots actuated by electroactive polymers, IEEE Robotics Automat. Lett. 1 (1) (2016), pp. 391–398.
  • R.K. Jain, S. Majumder, and A. Dutta, Scara based peg-in-hole assembly using compliant IPMC micro gripper, Rob. Auton. Syst. 61 (3) (2013), pp. 297–311.
  • Z. Ye, P. Hou, and Z. Chen, 2D maneuverable robotic fish propelled by multiple ionic polymer–Metal composite artificial fins, Int. J. Intell. Robotics Appl. 1 (2) (2017), pp. 1–14.
  • K.T. Nguyen, S.Y. Ko, J.-O. Park, and S. Park, Miniaturized terrestrial walking robot using PVDF/PVP/PSSA based ionic polymer–Metal composite actuator, J. Mech. Robot 8 (4) (2016), pp. 041006.
  • M. Aureli, V. Kopman, and M. Porfiri, Free-locomotion of underwater vehicles actuated by ionic polymer metal composites, IEEE/ASME Trans. Mechatron. 15 (4) (2010), pp. 603–614.
  • C.T. Nguyen, H. Phung, T.D. Nguyen, C. Lee, U. Kim, D. Lee, H. Moon, J. Koo, J.-D. Nam, and H.R. Choi, A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators, Smart Mater. Struct. 23 (6) (2014), pp. 065005.
  • C.T. Nguyen, H. Phung, H. Jung, U. Kim, T.D. Nguyen, J. Park, H. Moon, J.C. Koo, and H.R. Choi, Printable monolithic hexapod robot driven by soft actuator, IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015
  • S. Miyashita, S. Guitron, K. Yoshida, S. Li, D.D. Damian, and D. Rus, Ingestible, controllable, and degradable origami robot for patching stomach wounds, IEEE International Conference on Robotics and Automation (ICRA), Stockholm, 2016
  • H. Wermter and H. Finkelmann, Liquid crystalline elastomers as artificial muscles, E- Polymers 1 (1) (2001), pp. 111–123.
  • A.H. Gelebart, D.J. Mulder, M. Varga, A. Konya, G. Vantomme, E. Meijer, R.L. Selinger, and D.J. Broer, Making waves in a photoactive polymer film, Nature 546 (7660) (2017), pp. 632.
  • R. Tiwari and E. Garcia, The state of understanding of ionic polymer metal composite architecture: A review, Smart Mater. Struct. 20 (8) (2011), pp. 083001.
  • C. Jo, D. Pugal, I. Oh, K.J. Kim, and K. Asaka, Recent advances in ionic polymer-metal composite actuators and their modeling and applications, Prog. Polym. Sci. 38 (7) (2013), pp. 1037–1066.
  • Y. Bahramzadeh and M. Shahinpoor, A review of ionic polymeric soft actuators and sensors, Soft Robotics 1 (1) (2014), pp. 38–52.
  • J. Le Bideau, L. Viau, and A. Vioux, Ionogels, ionic liquid based hybrid materials, Chem. Soc. Rev. 40 (2) (2011), pp. 907–925.
  • T.J. White and D.J. Broer, Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers, Nat. Mater. 14 (11) (2015), pp. 1087.
  • C. Ohm, M. Brehmer, and R. Zentel, Liquid crystalline elastomers as actuators and sensors, Advan. Mater. 22 (31) (2010), pp. 3366–3387.
  • Q. Zhao, H.J. Qi, and T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding, Prog. Polym. Sci. 49 (2015), pp. 79–120.
  • Y. Liu, H. Du, L. Liu, and J. Leng, Shape memory polymers and their composites in aerospace applications: A review, Smart Mater. Struct. 23 (2) (2014), pp. 023001.
  • J.D. Carrico, J.M. Erickson, and K.K. Leang, Characterization of 3D-printed IPMC actuators, SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, Las Vegas, 2016.
  • P. De Gennes, K. Okumura, M. Shahinpoor, and K. Kim, Mechanoelectric effects in ionic gels, Europhys. Lett. 50 (4) (2000), pp. 513.
  • Y. Cha and M. Porfiri, Mechanics and electrochemistry of ionic polymer metal composites, J. Mech. Phys. Solids. 71 (2014), pp. 156–178.
  • I.-S. Park, S.-M. Kim, D. Pugal, L. Huang, S.-W. Tam-Chang, and K.J. Kim, Visualization of the cation migration in ionic polymer–Metal composite under an electric field, Appl.Phys.Lett. 96 (4) (2010), pp. 043301.
  • M. Shahinpoor and K.J. Kim, Ionic polymer–Metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles, Smart Mater. Struct. 13 (2004), pp. 1362–1388.
  • S. Nemat-Nasser and J.Y. Li, Electromechanical response of ionic polymer-metal composites, J. Appl. Phys. 87 (7) (2000), pp. 3321–3331.
  • M. Porfiri, An electromechanical model for sensing and actuation of ionic polymer metal composites, Smart Mater. Struct. 18 (1) (2008), pp. 015016.
  • E. Biddiss and T. Chau, Electroactive polymeric sensors in hand prostheses: Bending response of an ionic polymer metal composite, Med. Eng. Phys. 28 (6) (2006), pp. 568–578.
  • M. Aureli and M. Porfiri, Nonlinear sensing of ionic polymer metal composites, Continuum Mech. Thermodynamics 25 (2–4) (2013), pp. 273–310.
  • S. Kang, J. Shin, S.J. Kim, H.J. Kim, and Y.H. Kim, Robust control of ionic polymer–Metal composites, Smart Mater. Struct. 16 (6) (2007), pp. 2457.
  • M.J. Fleming, K.J. Kim, and K.K. Leang, Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes, Smart Mater. Struct. 21 (8) (2012), pp. 085002.
  • Y. Bar-Cohen, S. Leary, K. Oguro, S. Tadokoro, J. Harrison, J. Smith, and J. Su, Challenges to the application of IPMC as actuators of planetary mechanisms, SPIE International Symposium on Smart Structures and Materials, Newport, 2000.
  • X.-L. Wang, I.-K. Oh, J. Lu, J. Ju, and S. Lee, Biomimetic electro-active polymer based on sulfonated poly (styrene-b-ethylene-co-butylene-b-styrene), Mater. Lett. 61 (29) (2007), pp. 5117–5120.
  • M. Shahinpoor and K.J. Kim, Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct.. 10 (2001), pp. 819–833.
  • T. Wallmersperger, B. Kröplin, and R.W. Gülch, Coupled chemo-electro-mechanical formulation for ionic polymer gels––Numerical and experimental investigations, Mechanics Mater. 36 (5–6) (2004), pp. 411–420.
  • T. Wallmersperger, D.J. Leo, and C.S. Kothera, Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling, J. Appl. Phys. 101 (2) (2007), pp. 024912.
  • T. Wallmersperger, B.J. Akle, D.J. Leo, and B. Kröplin, Electrochemical response in ionic polymer transducers: An experimental and theoretical study, Compos. Sci. Technol. 68 (5) (2008), pp. 1173–1180.
  • M. Aureli, C. Prince, M. Porfiri, and S.D. Peterson, Energy harvesting from base excitation of ionic polymer metal composites in fluid environments, Smart Mater. Struct. 19 (1) (2009), pp. 015003.
  • M. Aureli, W. Lin, and M. Porfiri, On the capacitance-boost of ionic polymer metal composites due to electroless plating: Theory and experiments, J. Appl. Phys. 105 (10) (2009), pp. 104911.
  • Y. Bar-Cohen (ed.), Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, Bellingham, 2004.
  • M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, and J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review, Smart Mater. Struct. 7 (6) (1998), pp. R15–R30.
  • Y. Cha, M. Aureli, and M. Porfiri, A physics-based model of the electrical impedance of ionic polymer metal composites, J. Appl. Phys. 111 (12) (2012), pp. 124901.
  • Y. Cha, H. Kim, and M. Porfiri, Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer–Metal composites, Bioinspir. Biomim. 8 (3) (2013), pp. 036003.
  • Y. Cha, F. Cellini, and M. Porfiri, Electrical impedance controls mechanical sensing in ionic polymer metal composites, Phys. Rev. E 88 (6) (2013), pp. 062603.
  • A. Lucantonio, P. Nardinocchi, and L. Teresi, Transient analysis of swelling-induced large deformations in polymer gels, J. Mech. Phys. Solids 61 (1) (2013), pp. 205–218.
  • P. Nardinocchi and M. Pezzulla, Curled actuated shapes of ionic polymer metal composites strips, J. Appl. Phys. 113 (22) (2013), pp. 224906.
  • B.J. Akle, D.J. Leo, M.A. Hickner, and J.E. McGrath, Correlation of capacitance and actuation in ionomeric polymer transducers, J. Mater. Sci. 40 (14) (2005), pp. 3715–3724.
  • X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, and X. Zhou, An autonomous robotic fish for mobile sensing, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 2006.
  • K.J. Kim, D. Pugal, and K.K. Leang, A twistable ionic polymer-metal composite artificial muscle for marine applications, Marine Technol. Soc. J. 45 (4) (2011), pp. 83–98.
  • V. Palmre, J.J. Hubbard, M. Fleming, D. Pugal, S. Kim, K.J. Kim, and K.K. Leang, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications, Smart Mater. Struct. 22 (1) (2013), pp. 014003.
  • J.J. Hubbard, M. Fleming, V. Palmre, D. Pugal, K.J. Kim, and K.K. Leang, Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics, IEEE J. Oceanic Eng. 39 (3) (2014), pp. 540–551.
  • P. Arena, C. Bonomo, L. Fortuna, M. Frasca, and S. Graziani, Design and control of an IPMC wormlike robot, IEEE Trans. Syst. Man, Cybernet. B. Cybernet. 36 (5) (2006), pp. 1044–1052.
  • T.T. Nguyen, N.S. Goo, V.K. Nguyen, Y. Yoo, and S. Park, Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm, Sens. Actuators A Phys. 141 (2) (2008), pp. 640–648.
  • B.-K. Fang, M.-S. Ju, and -C.-C.K. Lin, A new approach to develop ionic polymer–Metal composites (IPMC) actuator: Fabrication and control for active catheter systems, Sens. Actuators A Phys. 137 (2) (2007), pp. 321–329.
  • W.J. Yoon, P.G. Reinhall, and E.J. Seibel, Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope, Sens. Actuators A Phys. 133 (2) (2007), pp. 506–517.
  • The Chemours Company FC, LLC, Nafion N115, N117, N110 Ion Exchange Materials: Extrusion Cast Membranes, Fayetteville, NC, 2016. Available at: https://www.chemours.com/Nafion/en_US/index.html.
  • K. Asaka, N. Fujiwara, K. Oguro, k. Onishi, and S. Sewa, State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators, J. Electroanal. Chem. 505 (1–2) (2001), pp. 24–32.
  • S. Nemat-Nasser and S. Zamani, Experimental study of nafion- and flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent, Smart Struct. Mater. 5051 (2003), pp. 233–244.
  • Solvay Specialty Polymers, Aquivion E87-05s, Fayetteville, NC, 2017. Available at: http://www.solvay.com/.
  • N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, Characterization of flemion membranes for PEFC, Electrochim. Acta 43 (24) (1998), pp. 3749–3754.
  • M. Luqman, J.-W. Lee, -K.-K. Moon, and Y.-T. Yoo, Sulfonated polystyrene-based ionic polymer–Metal composite (IPMC) actuator, J. Ind. Eng. Chem. 17 (1) (2011), pp. 49–55.
  • X.-L. Wang, I.-K. Oh, and T.-H. Cheng, Electro-active polymer actuators employing sulfonated poly (styrene-ran-ethylene) as ionic membranes, Polym. Int. 59 (3) (2010), pp. 305–312.
  • Y. Tang, Z. Xue, X. Zhou, X. Xie, and C.-Y. Tang, Novel sulfonated polysulfone ion exchange membranes for ionic polymer–Metal composite actuators, Sens. Actuators B Chem. 202 (2014), pp. 1164–1174.
  • V. Panwar, S.Y. Ko, J.-O. Park, and S. Park, Enhanced and fast actuation of fullerenol/PVDF/PVP/PSSA based ionic polymer metal composite actuators, Sens. Actuators B Chem. 183 (2013), pp. 504–517.
  • K.A. Mauritz and R.B. Moore, State of understanding of Nafion, Chem. Rev. 104 (10) (2004), pp. 4535–4586.
  • S.J. Lee, M.J. Han, S.J. Kim, J.Y. Jho, H.Y. Lee, and Y.H. Kim, A new fabrication method for IPMC actuators and application to artificial fingers, Smart Mater, Struct. 15 (2006), pp. 1217–1224.
  • K.J. Kim and M. Shahinpoor, A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles, Polymer 43 (3) (2002), pp. 797–802.
  • S. Trabia, Z. Olsen, T. Hwang, and K.J. Kim, Producing intricate IPMC shapes by means of spray-painting and printing (conference presentation), in SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Francisco, 2017.
  • DuPont Fluoroproducts, Chemical Treatment of Nafion PFSA Resins R-1100 and R-1000, DuPont Fluoroproducts, Fayetteville, NC, Nov 2002. Available at: www.ion-power.com.
  • K.J. Kim and M. Shahinpoor, Ionic polymer-metal composites: II. manufacturing techniques, Smart Mater. Struct. 12 (1) (2003), pp. 65–79.
  • V. Palmre, D. Pugal, K.J. Kim, K.K. Leang, K. Asaka, and A. Aabloo, Nanothorn electrodes for ionic polymer-metal composite artificial muscles, Sci. Rep. 4 (6176) (2014), pp. 1–10.
  • S.-M. Kim and K.J. Kim, Palladium buffer-layered high performance ionic polymer–Metal composites, Smart Mater. Struct. 17 (3) (2008), pp. 035011.
  • C.-K. Chung, P. Fung, Y. Hong, M.-S. Ju, -C.-C.K. Lin, and T. Wu, A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders, Sens. Actuators B Chem. 117 (2) (2006), pp. 367–375.
  • J. Kim, S.-H. Bae, M. Kotal, T. Stalbaum, K.J. Kim, and I.-K. Oh, Soft but powerful artificial muscles based on 3D graphene–CNT-Ni heteronanostructures, Small 13 (31) (2017), pp. 1701314.
  • J.-H. Jeon and I.-K. Oh, Selective growth of platinum electrodes for MDOF IPMC actuators, Thin Solid Films 517 (17) (2009), pp. 5288–5292.
  • B. Akle, S. Nawshin, and D. Leo, Reliability of high strain ionomeric polymer transducers fabricated using the direct assembly process, Smart Mater. Struct. 16 (2) (2007), pp. S256.
  • B.J. Akle, M.D. Bennett, D.J. Leo, K.B. Wiles, and J.E. McGrath, Direct assembly process: A novel fabrication technique for large strain ionic polymer transducers, J. Mater. Sci. 42 (16) (2007), pp. 7031–7041.
  • F. Cellini, A. Grillo, and M. Porfiri, Ionic polymer metal composites with polypyrrole-silver electrodes, Appl.Phys.Lett. 106 (13) (2015), pp. 131902.
  • A. Aabloo, V. De Luca, G. Di Pasquale, S. Graziani, C. Gugliuzzo, U. Johanson, C. Marino, A. Pollicino, and R. Puglisid, A new class of ionic electroactive polymers based on green synthesis, Sens. Actuators A Phys. 249 (2016), pp. 32–44.
  • J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes, ACS Nano 8 (3) (2014), pp. 2986–2997.
  • J.D. Carrico, N.W. Traeden, M. Aureli, and K.K. Leang, Fused filament additive manufacturing of ionic polymer-metal composite soft active 3D structures, ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Colorado Springs, 2015.
  • S. Trabia, Z. Olsen, and K.J. Kim, Searching for a new ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate, Smart Mater. Struct. 26 (2017), pp. 115029.
  • M. Yamakita, N. Kamamichi, T. Kozuki, K. Asaka, and Z.-W. Luo, Control of biped walking robot with IPMC linear actuator, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, 2005.
  • K. Takagi, Z.W. Luo, K. Asaka, and K. Tahara, Limited-angle motor using ionic polymer-metal composite, SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, San Diego, 2005.
  • S. Song, Y. Shan, K.J. Kim, and K.K. Leang, Tracking control of oscillatory motion in IPMC actuators for underwater applications, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Montréal, 2010.
  • S. Nemat-Nasser, S. Zamani, and Y. Tor, Effect of solvents on the chemical and physical properties of ionic polymer-metal composites, J. Appl. Phys. 99 (10) (2006), pp. 104902.
  • V. Vunder, A. Punning, and A. Aabloo, Mechanical interpretation of back-relaxation of ionic electroactive polymer actuators, Smart Mater. Struct. 21 (11) (2012), pp. 115023.
  • M. Porfiri, A. Leronni, and L. Bardella, An alternative explanation of back-relaxation in ionic polymer metal composites, Extreme Mechan. Lett. 13 (2017), pp. 78–83.
  • Z. Chen, K.-Y. Kwon, and X. Tan, Integrated IPMC/PVDF sensory actuator and its validation in feedback control, Sens. Actuators A Phys. 144 (2) (2008), pp. 231–241.
  • K. Kruusamae, P. Brunetto, S. Graziani, A. Punning, G. Di Pasquale, and A. Aabloo, Self-sensing ionic polymer-metal composite actuating device with patterned surface electrodes, Polym. Int. 59 (3) (2009), pp. 300–304.
  • A. Punning, K.J. Kim, V. Palmre, F. Vidal, C. Plesse, N. Festin, A. Maziz, K. Asaka, T. Sugino, G. Alici, G. Spinks, G. Wallace, I. Must, I. Põldsalu, V. Vunder, R. Temmer, K. Kruusamäe, J. Torop, F. Kaasik, P. Rinne, U. Johanson, A.-L. Peikolainen, T. Tamm, and A. Aabloo, Ionic electroactive polymer artificial muscles in space applications, Sci. Rep. 4 (2014), pp. 6913.
  • M.A. Tsugawa, V. Palmre, J.D. Carrico, K.J. Kim, and K.K. Leang, Slender tube-shaped and square rod-shaped IPMC actuators with integrated sensing for soft mechatronics, Meccanica 50 (11) (2015), pp. 2781–2795.
  • V. Vunder, M. Itik, I. Poldsalu, A. Punning, and A. Aabloo, Inversion-based control of ionic polymer–Metal composite actuators with nanoporous carbon-based electrodes, Smart Mater. Struct. 23 (2) (2013), pp. 025010.
  • Z. Chen and X. Tan, A control-oriented and physics-based model for ionic polymer–Metal composite actuators, IEEE/ASME Trans. Mechatron. 13 (5) (2008), pp. 519–529.
  • P.C. Branco and J. Dente, Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–Metal composite (IPMC) electromechanics, Smart Mater. Struct. 15 (2) (2006), pp. 378.
  • M. Porfiri, Charge dynamics in ionic polymer metal composites, J. Appl. Phys. 104 (10) (2008), pp. 104915.
  • Y. Cha, M. Aureli, and M. Porfiri, A physics-based model of the electrical impedance of ionic polymer metal composites, J. Appl. Phys. 111 (12) (2012), pp. 124901.
  • X. Bao, Y. Bar-Cohen, and S. Li, Measurements and macro models of ionomeric polymer-metal composites (IMPC), SPIE International Symposium on Smart Structures, EAPAD Conference, San Diego, 2002.
  • J.W. Paquette, K.J. Kim, J.-D. Nam, and Y.S. Tak, An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique, ASME International Mechanical Engineering Congress and Exposition, New Orleans, 2002.
  • C. Bonomo, L. Fortuna, P. Giannone, and S. Graziani, A circuit to model the electrical behavior of an ionic polymer-metal composite, IEEE Trans. Circuits Syst. 53 (2) (2006), pp. 338–350.
  • R.C. Richardson, M.C. Levesley, M.D. Brown, J.A. Hawkes, K. Watterson, and P.G. Walker, Control of ionic polymer metal composites, IEEE/ASME Trans. Mechatron. 8 (2) (2003), pp. 245–253.
  • Y. Shan and K.K. Leang, Frequency-weighted feedforward control for dynamic compensation in ionic polymer-metal composite actuators, Smart Mater. Struct. 18 (12) (2009), pp. 125016.
  • B.C. Lavu, M.P. Schoen, and A. Mahajan, Adaptive intelligent control of ionic polymer–Metal composites, Smart Mater. Struct. 14 (4) (2005), pp. 466.
  • J. Brufau-Penella, K. Tsiakmakis, T. Laopoulos, and M. Puig-Vidal, Model reference adaptive control for an ionic polymer metal composite in underwater applications, Smart Mater. Struct. 17 (4) (2008), pp. 045020.
  • A. McDaid, K. Aw, S. Xie, and E. Haemmerle, Gain scheduled control of IPMC actuators with model-free iterative feedback tuning, Sens. Actuators A Phys. 164 (1) (2010), pp. 137–147.
  • A. McDaid, K. Aw, E. Haemmerle, M. Shahinpoor, and S. Xie, Adaptive tuning of a 2dof controller for robust cell manipulation using IPMC actuators, J. Micromech. Microeng. 21 (12) (2011), pp. 125004.
  • K.K. Ahn, D.Q. Truong, D.N.C. Nam, J.I. Yoon, and S. Yokota, Position control of ionic polymer metal composite actuator using quantitative feedback theory, Sens. Actuators A Phys. 159 (2) (2010), pp. 204–212.
  • E. Smela, Conjugated polymer actuators for biomedical applications, Advan. Mater. 15 (6) (2003), pp. 481–494.
  • G. Alici, B. Mui, and C. Cook, Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications, Sens. Actuators A Phys. 2 (126) (2006), pp. 396–404.
  • L. Bay, K. West, P. Sommer-Larsen, S. Skaarup, and M. Benslimane, A conducting polymer artificial muscle with 12% linear strain, Advan. Mater. 15 (4) (2003), pp. 310–313.
  • Y. Fang, Conjugated polymer actuators and sensors: Modeling, control, and applications, Ph.D. diss., Michigan State University, 2009.
  • H.J. Kwon, Y. Osada, and J.P. Gong, Polyelectrolyte gels-fundamentals and applications, Polymer J. 38 (12) (2006), pp. 1211–1219.
  • E. Palleau, D. Morales, M.D. Dickey, and O.D. Velev, Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting, Nat. Commun. 4 (2257) (2013), pp. 2257.
  • M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater 8 (8) (2009), pp. 621–629.
  • R. Baughman, Conducting polymer artificial muscles, Synth. Met. 78 (3) (1996), pp. 339–353.
  • R. Temmer, A. Maziz, C. Plesse, A. Aabloo, F. Vidal, and T. Tamm, In search of better electroactive polymer actuator materials: Ppy versus pedot versus pedot–Ppy composites, Smart Mater. Struct. 22 (10) (2013), pp. 104006.
  • E. Smela, Microfabrication of ppy microactuators and other conjugated polymer devices, J. Micromech. Microeng. 9 (1) (1999), pp. 1.
  • S. Bhadra, D. Khastgir, N.K. Singha, and J.H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci. 34 (8) (2009), pp. 783–810.
  • M.A.B.H. Susan, T. Kaneko, A. Noda, and M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes, J. Am. Chem. Soc. 127 (13) (2005), pp. 4976–4983.
  • Z. Wang, B. He, X. Liu, and Q. Wang, Development and modeling of a new ionogel based actuator, J. Intell Mater. Syst. Struct 28 (15) (2017), pp. 2036–2050.
  • P. Izak, S.ˇ. Hovorka, T. Bartovsky`, L. Bartovska, and J. Crespo, Swelling of polymeric membranes in room temperature ionic liquids, J. Memb. Sci. 296 (1) (2007), pp. 131–138.
  • D. Zhou, G.M. Spinks, G.G. Wallace, C. Tiyapiboonchaiya, D.R. MacFarlane, M. Forsyth, and J. Sun, Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes, Electrochim. Acta 48 (14) (2003), pp. 2355–2359.
  • T. Fukushima, K. Asaka, A. Kosaka, and T. Aida, Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel, Angewandte Chemie Int. Ed. 44 (16) (2005), pp. 2410–2413.
  • K. Mukai, K. Asaka, K. Kiyohara, T. Sugino, I. Takeuchi, T. Fukushima, and T. Aida, High performance fully plastic actuator based on ionic-liquid-based bucky gel, Electrochim. Acta 53 (17) (2008), pp. 5555–5562.
  • N. Kamamichi, T. Maeba, M. Yamakita, and T. Mukai, Fabrication of bucky gel actuator/sensor devices based on printing method, IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, 2008.
  • S.W. John, G. Alici, and C.D. Cook, Inversion-based feedforward control of polypyrrole trilayer bender actuators, IEEE/ASME Trans. Mechatron. 15 (1) (2010), pp. 149–156.
  • Y. Wu, G. Alici, J.D. Madden, G.M. Spinks, and G.G. Wallace, Soft mechanical sensors through reverse actuation in polypyrrole, Adv. Funct. Mater. 17 (16) (2007), pp. 3216–3222.
  • S.W. John, G. Alici, and C.D. Cook, Towards the position control of conducting polymer trilayer bending actuators with integrated feedback sensor, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 2009.
  • K. Kruusama¨E, A. Punning, A. Aabloo, and K. Asaka, Self-sensing ionic polymer actuators: A review, Actuators 4 (1) (2015), pp. 17–38.
  • Y. Fang, X. Tan, and G. Alici, Robust adaptive control of conjugated polymer actuators, IEEE Trans. Control Syst. Technol. 16 (4) (2008), pp. 600–612.
  • C.M. Druitt and G. Alici, Intelligent control of electroactive polymer actuators based on fuzzy and neurofuzzy methodologies, IEEE/ASME Trans. Mechatron. 19 (6) (2014), pp. 1951–1962.
  • T. Chung, A. Romo-Uribe, and P.T. Mather, Two-way reversible shape memory in a semicrystalline network, Macromolecules 41 (1) (2008), pp. 184–192.
  • M. Bothe and T. Pretsch, Bidirectional actuation of a thermoplastic polyurethane elastomer, J. Mater. Chem. 1 (46) (2013), pp. 14491–14497.
  • M. Behl, K. Kratz, J. Zotzmann, U. N¨Ochel, and A. Lendlein, Reversible bidirectional shape- memory polymers, Advan. Mater. 25 (32) (2013), pp. 4466–4469.
  • Y. Mao, Z. Ding, C. Yuan, S. Ai, M. Isakov, J. Wu, T. Wang, M.L. Dunn, and H.J. Qi, 3d printed reversible shape changing components with stimuli responsive materials, Sci. Rep. 24761 (6) (2016), pp. 1–13.
  • A. Lendlein and V.P. Shastri, Stimuli-sensitive polymers, Advan. Mater. 22 (31) (2010), pp. 3344–3347.
  • H. Meng and G. Li, A review of stimuli-responsive shape memory polymer composites, Polymer 54 (9) (2013), pp. 2199–2221.
  • V. Srivastava, S.A. Chester, and L. Anand, Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations, J. Mech. Phys. Solids 58 (8) (2010), pp. 1100–1124.
  • H. Jiang, S. Kelch, and A. Lendlein, Polymers move in response to light, Advan. Mater. 18 (11) (2006), pp. 1471–1475.
  • M. Behl and A. Lendlein, Shape-memory polymers, Mater. Today 10 (4) (2007), pp. 20–28.
  • B. Yang, W. Huang, C. Li, C. Lee, and L. Li, On the effects of moisture in a polyurethane shape memory polymer, Smart Mater. Struct. 13 (1) (2003), pp. 191.
  • H. Lu and S. Du, A phenomenological thermodynamic model for the chemo-responsive shape memory effect in polymers based on Flory–Huggins solution theory, Polym. Chem. 5 (4) (2014), pp. 1155–1162.
  • X. Qi, X. Yao, S. Deng, T. Zhou, and Q. Fu, Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites, J. Mater. Chem. 2 (7) (2014), pp. 2240–2249.
  • Y. Zhu, J. Hu, H. Luo, R.J. Young, L. Deng, S. Zhang, Y. Fan, and G. Ye, Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites, Soft Matt. 8 (8) (2012), pp. 2509–2517.
  • J. Hu, Y. Zhu, H. Huang, and J. Lu, Recent advances in shape memory polymers: Structure, mechanism, functionality, modeling and applications, Prog. Polym. Sci. 37 (4) (2012), pp. 1720–1763.
  • S.M. Felton, M.T. Tolley, C.D. Onal, D. Rus, and R.J. Wood, Robot self-assembly by folding: A printed inchworm robot, IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, 2013.
  • D. Zhang, O.J. George, K.M. Petersen, A.C. Jimenez-Vergara, M.S. Hahn, and M.A. Grunlan, A bioactive self-fitting shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects, Acta Biomater. 10 (11) (2014), pp. 4597–4605.
  • W. Small IV, T.S. Wilson, W.J. Benett, J.M. Loge, and D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device, Opt. Exp. 13 (20) (2005), pp. 8204–8213.
  • W. Sokolowski, A. Metcalfe, S. Hayashi, L. Yahia, and J. Raymond, Medical applications of shape memory polymers, Biomed. Mater. 2 (1) (2007), pp. S23.
  • R.S. Langer and A. Lendlein, Shape memory polymers, U.S. Patent 6,388,043, May 14 2002.
  • A. Lendlein, H. Jiang, O. Junger, and R. Langer, Light-induced shape-memory polymers, Nature 434 (7035) (2005), pp. 879.
  • M. Zarek, M. Layani, I. Cooperstein, E. Sachyani, D. Cohn, and S. Magdassi, 3D printing of shape memory polymers for flexible electronic devices, Advan. Mater. 28 (22) (2016), pp. 4449–4454.
  • H. Yang, W.R. Leow, T. Wang, J. Wang, J. Yu, K. He, D. Qi, C. Wan, and X. Chen, 3D printed photoresponsive devices based on shape memory composites, Advan. Mater. 29 (2017), pp. 1701627.
  • Q. Ge, A.H. Sakhaei, H. Lee, C.K. Dunn, N.X. Fang, and M.L. Dunn, Multi-material 4D printing with tailorable shape memory polymers, Sci. Rep. 6 (31110) (2016), pp. 1–11.
  • S. Miyashita, S. Guitron, M. Ludersdorfer, C.R. Sung, and D. Rus, An untethered miniature origami robot that self-folds, walks, swims, and degrades, IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015.
  • S. Felton, M. Tolley, E. Demaine, D. Rus, and R. Wood, A method for building self-folding machines, Science 345 (6197) (2014), pp. 644–646.
  • S. Felton, K. Becker, D. Aukes, and R. Wood, Self-folding with shape memory composites at the millimeter scale, J. Micromech. Microeng. 25 (8) (2015), pp. 085004.
  • Y. Mao, K. Yu, M.S. Isakov, J. Wu, M.L. Dunn, and H.J. Qi, Sequential self-folding structures by 3D printed digital shape memory polymers, Sci. Rep. 5 (13616) (2015), pp. 1–12.
  • K. Yu, A. Ritchie, Y. Mao, M.L. Dunn, and H.J. Qi, Controlled sequential shape changing components by 3d printing of shape memory polymer multimaterials, Procedia IUTAM. 12 (2015), pp. 193–203.
  • M.D. Hager, S. Bode, C. Weber, and U.S. Schubert, Shape memory polymers: Past, present and future developments, Prog. Polym. Sci.. 49 (2015), pp. 3–33.
  • J.R. Kumpfer and S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers, J. Am. Chem. Soc. 133 (32) (2011), pp. 12866–12874.
  • Y. Liu, K. Gall, M.L. Dunn, A.R. Greenberg, and J. Diani, Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling, Int. J. Plasticity 22 (2) (2006), pp. 279–313.
  • H. Tobushi, T. Hashimoto, S. Hayashi, and E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series, J. Intell Mater. Syst. Struct. 8 (8) (1997), pp. 711–718.
  • W. Xu and G. Li, Constitutive modeling of shape memory polymer based self-healing syntactic foam, Int. J. Solids Struct. 47 (9) (2010), pp. 1306–1316.
  • J. Leng, X. Lan, Y. Liu, and S. Du, Shape-memory polymers and their composites: Stimulus methods and applications, Prog. Mater. Sci. 56 (7) (2011), pp. 1077–1135.
  • Y. Yu and T. Ikeda, Photodeformable polymers: A new kind of promising smart material for micro-and nano-applications, Macromol. Chem. Phys. 206 (17) (2005), pp. 1705–1708.
  • K.N. Long, T.F. Scott, H.J. Qi, C.N. Bowman, and M.L. Dunn, Photomechanics of light-activated polymers, J. Mech. Phys. Solids 57 (7) (2009), pp. 1103–1121.
  • A. Grinthal and J. Aizenberg, Adaptive all the way down: Building responsive materials from hierarchies of chemomechanical feedback, Chem. Soc. Rev. 42 (17) (2013), pp. 7072–7085.
  • J. Leng, H. Lu, Y. Liu, W.M. Huang, and S. Du, Shape-memory polymers a class of novel smart materials, MRS Bulletin 34 (11) (2009), pp. 848–855.
  • S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, F. Giesselmann, D.S. Wiersma, E. Lauga, and P. Fischer, Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots, Nat. Mater 15 (6) (2016), pp. 647–653.
  • M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, Fast liquid-crystal elastomer swims into the dark, Nat. Mater 3 (5) (2004), pp. 307.
  • H. Shahsavan, S.M. Salili, A. J´Akli, and B. Zhao, Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads, Advan. Mater. 29 (3) (2017), pp. 1604021.
  • F. BröMmel, D. Kramer, and H. Finkelmann, Preparation of liquid crystalline elastomers, in In Liquid Crystal Elastomers: Materials and Applications, F.W.H. De Jeu, ed., Springer-Verlag, Berlin, 2012, pp. 1–48.
  • C.J. Barrett, J.-I. Mamiya, K.G. Yager, and T. Ikeda, Photo-mechanical effects in azobenzene-containing soft materials, Soft Matt. 3 (10) (2007), pp. 1249–1261.
  • D. Broer, G.P. Crawford, and S. Zumer (eds.), Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers, CRC press, Boca Raton, 2011.
  • T.H. Ware, M.E. McConney, J.J. Wie V.P. Tondigliaand T.J. White, Voxelated liquid crystal elastomers, Science 347 (6225) (2015), pp. 982–984.
  • M.J. Zohuriaan-Mehr and K. Kabiri, Superabsorbent polymer materials: A review, Iranian Polymer J. 17 (6) (2008), pp. 451.
  • Y. Bahramzadeh and M. Shahinpoor, A review of ionic polymeric soft actuators and sensors, Soft Robotics 1 (1) (2014), pp. 38–52.
  • E.M. Ahmed, F.S. Aggor, A.M. Awad, and A.T. El-Aref, An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel, Carbohydr. Polym. 91 (2) (2013), pp. 693–698.
  • J. Odent, T.J. Wallin, W. Pan, K. Kruemplestaedter, R.F. Shepherd, and E.P. Giannelis, Highly elastic, transparent, and conductive 3D-printed ionic composite hydrogels, Adv. Funct. Mater. 27 (33) (2017), pp. 1701807.
  • S. Rosset, M. Niklaus, P. Dubois, and H. Shea, Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes, Sens. Actuators A Phys. 144 (1) (2008), pp. 185–193.
  • C.T. Nguyen, H. Phung, T.D. Nguyen, C. Lee, U. Kim, D. Lee, H. Moon, J. Koo, J.-D. Nam, and H.R. Choi, A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators, Smart Mater. Struct. 23 (6) (2014), pp. 065005.
  • C.T. Nguyen, H. Phung, H. Jung, U. Kim, T.D. Nguyen, J. Park, H. Moon, J.C. Koo, and H.R. Choi, Printable monolithic hexapod robot driven by soft actuator, IEEE International Conference on Robotics and Automation (ICRA), Seattle, 2015.
  • H.S. Jung, S.Y. Yang, K.H. Cho, M.G. Song, C.T. Nguyen, H. Phung, U. Kim, H. Moon, J.C. Koo, J.-D. Nam, and H.R. Choi, Design and fabrication of twisted monolithic dielectric elastomer actuator, Int. J. Control, Automation Syst. 15 (1) (2017), pp. 25–35.
  • C. Keplinger, T. Li, R. Baumgartner, Z. Suo, and S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation, Soft Matt. 8 (2) (2012), pp. 285–288.
  • L. Hines, K. Petersen, and M. Sitti, Inflated soft actuators with reversible stable deformations, Advan. Mater. 28 (19) (2016), pp. 3690–3696.
  • K. Jung, J.C. Koo, J.-D. Nam, Y.K. Lee, and H.R. Choi, Artificial annelid robot driven by soft actuators, Bioinspir. Biomim. 2 (3) (2007), pp. S42–S49.
  • J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, Polymer actuators: Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators, Advan. Mater. 28 (2) (2016), pp. 231–238.
  • H. Xia, M. Takasaki, and T. Hirai, Actuation mechanism of plasticized PVC by electric field, Sens. Actuators A. Phys. 157 (2) (2010), pp. 307–312.
  • N. Ogawa, M. Hashimoto, M. Takasaki, and T. Hirai, Characteristics evaluation of PVC gel actuators, IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, 2009.
  • Y. Li and M. Hashimoto, PVC gel based artificial muscles: Characterizations and actuation modular constructions, Sens. Actuators A Phys. 233 (2015), pp. 246–258.
  • Y. Li and M. Hashimoto, Development of a lightweight walking assist wear using PVC gel artificial muscles, IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 2016.
  • P.G.A. Madden, Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop, Ph. D. diss., Massachusetts Institute of Technology, 2003.
  • J.D. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, and I.W. Hunter, Artificial muscle technology: Physical principles and naval prospects, IEEE J. Oceanic Eng. 29 (3) (2004), pp. 706–728.
  • R. Shankar, T.K. Ghosh, and R.J. Spontak, Dielectric elastomers as next-generation polymeric actuators, Soft Matt. 3 (9) (2007), pp. 1116–1129.
  • S.-K. Ahn, R.M. Kasi, S.-C. Kim, N. Sharma, and Y. Zhou, Stimuli-responsive polymer gels, Soft Matt. 4 (6) (2008), pp. 1151–1157.
  • P. Du, X. Lin, and X. Zhang, A multilayer bending model for conducting polymer actuators, Sens. Actuators A Phys. 163 (1) (2010), pp. 240–246.
  • B.J. Akle, M.D. Bennett, and D.J. Leo, High-strain ionomeric–Ionic liquid electroactive actuators, Sens. Actuators A Phys. 126 (1) (2006), pp. 173–181.
  • G.-H. Feng, Micromachined ionic polymer metal composite actuators for biomedical applications, in Ionic Polymer Metal Composites (Ipmcs): Smart Multi-Functional Materials and Artificial Muscles, M. Shahinpoor, ed., Vol. 2, Royal Society of Chemistry, Cambridge, 2015, pp. 215–239.
  • J.D. Carrico and K.K. Leang, Fused-filament 3D printing of ionic polymer-metal composites for soft robotics, SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, San Diego, 2017.
  • M. Anthamatten, S. Roddecha, and J. Li, Energy storage capacity of shape-memory polymers, Macromolecules 46 (10) (2013), pp. 4230–4234.
  • W. Voit, T. Ware, R.R. Dasari, P. Smith, L. Danz, D. Simon, S. Barlow, S.R. Marder, and K. Gall, High-strain shape-memory polymers, Adv. Funct. Mater. 20 (1) (2010), pp. 162–171.
  • K. Gall, C.M. Yakacki, Y. Liu, R. Shandas, N. Willett, and K.S. Anseth, Thermomechanics of the shape memory effect in polymers for biomedical applications, J. Biomed. Mater. Res. 73 (3) (2005), pp. 339–348.
  • M.D. Hager, S. Bode, C. Weber, and U.S. Schubert, Shape memory polymers: Past, present and future developments, Prog. Polym. Sci. 49–50 (2015), pp. 3–33.
  • X. Gu, and P. T. Mather, Entanglement-based shape memory polyurethanes:synthesis and characterization, Polymer, 53 (25) (2012), pp. 5924.
  • Y. Yu, M. Nakano, and T. Ikeda, Photomechanics: Directed bending of a polymer film by light, Nature 425 (6954) (2003), pp. 145.
  • H. Jiang, S. Kelch, and A. Lendlein, Polymers move in response to light, Advan. Mater. 18 (11) (2006), pp. 1471–1475.
  • M.D. Manrique-Juarez, S. Rat, L. Salmon, G. Molna´R, C.M. Quintero, L. Nicu, H.J. Shepherd, and A. Bousseksou, Switchable molecule-based materials for micro-and nanoscale actuating applications: Achievements and prospects, Coord. Chem. Rev. 308 (2) (2016), pp. 395–408.
  • L.T. De Haan, V. Gimenez-Pinto, A. Konya, T.-S. Nguyen, J. Verjans, C. S´anchez-Somolinos, J.V. Selinger, R.L. Selinger, D.J. Broer, and A.P. Schenning, Accordion-like actuators of multiple 3d patterned liquid crystal polymer films, Adv. Funct. Mater. 24 (9) (2014), pp. 1251–1258.
  • J.D. Carrico, M. Fleming, M.A. Tsugawa, and K.K. Leang, Precision feedback and feedforward control of ionic polymer-metal composite actuators, in Ionic Polymer Metal Composites (Ipmcs): Smart Multi-Functional Materials and Artificial Muscles, M. Shahinpoor, ed., Vol. 1, Royal Society of Chemistry, Cambridge, 2015, pp. 354–385.
  • S.J. Kim, D. Pugal, J. Wong, K.J. Kim, and W. Yim, A bio-inspired multi degree of freedom actuator based on a novel cylindrical ionic polymer–Metal composite material, Rob. Auton. Syst. 62 (1) (2014), pp. 53–60.
  • S. Trabia, T. Hwang, and K.J. Kim, A fabrication method of unique Nafion shapes by painting for ionic polymer–Metal composites, Smart Mater. Struct. 25 (8) (2016), pp. 085006.
  • E. Smela, Conjugated polymer actuators, MRS Bulletin 33 (3) (2008), pp. 197–204.
  • A. Lendlein, S. Kelch, and K. Kratz, Kunststoffe mit programmie Gedächtnis, Kunststoffe 96 (2) (2006), pp. 54–59.
  • H. Zeng, P. Wasylczyk, C. Parmeggiani, D. Martella, M. Burresi, and D.S. Wiersma, Light-fueled microscopic walkers, Advan. Mater. 27 (26) (2015), pp. 3883.