1,651
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Morphology- and ion size-induced actuation of carbon nanotube architectures

ORCID Icon, ORCID Icon, &
Pages 111-134 | Received 19 Nov 2017, Accepted 22 Mar 2018, Published online: 10 Apr 2018

References

  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991), pp. 56–58. doi:10.1038/354056a0
  • M.-F. Yu, B.S. Files, S. Arepalli, and R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84 (1998), pp. 5552–5555. doi:10.1103/PhysRevLett.84.5552
  • D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, and D.T. Colbert, Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74 (1999). doi:10.1063/1.124185
  • M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kellyand, and R.F. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000), pp. 637–640. doi:10.1126/science.287.5453.637
  • Q.W. Li, Y. Li, X.F. Zhang, S.B. Chikkannanavar, Y.H. Zhao, A.M. Dangelewicz, L.X. Zheng, S.K. Doorn, Q.X. Jia, D.E. Petersen, P.N. Arendt, and Y.T. Zhu, Structure-dependent electrical properties of carbon nanotube fibers, Adv. Mater. 19 (2007), pp. 3358–3363. doi:10.1002/adma.200602966
  • U. Vohrer and N. Zschoerper, Kohlenstoff-Nanoroehren - Pḧoenix aus der Asche, Vakuum Forschung Und Praxis 19 (2007), pp. 22–30. doi:10.1002/(ISSN)1522-2454
  • N. Grobert, Nanotubes - grow or go? Mater. Today 9 (2006), pp. 64. doi:10.1016/S1369-7021(06)71680-7
  • R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Carbon nanotube actuators, Science 284 (1999), pp. 1340–1344. doi:10.1126/science.284.5418.1340
  • W.L. Guo and Y.F. Guo, Giant axial electrostrictive deformation in carbon nanotubes, Phys. Rev. Lett. 2 (2002), pp. 311–314.
  • E.T. Thostenson and T.-W. Chou, On the elastic properties of carbon nanotube-based composites: Modelling and characterization, J. Phys. D: Appl. Phys. 36 (2003), pp. 573–582. doi:10.1088/0022-3727/36/5/323
  • C. Li, E.T. Thostenson, and T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review, Comp. Sci. Tech. 68 (2008), pp. 1227–1249. doi:10.1016/j.compscitech.2008.01.006
  • U. Koslido, D.G. Weis, K. Hying, M.H. Haque, and I. Kolaric, Development of measurement set-up for electromechanical analysis of bucky paper actuators, J. Nanotechn. 3 (2007), pp. 1–11.
  • M. Hughes and G.M. Spinks, Multiwalled carbon-nanotube actuators, Adv. Mater. 17 (2005), pp. 443–446. doi:10.1002/(ISSN)1521-4095
  • H. Ebron, Z. Yang, D.J. Seyer, M.E. Kozlov, J. Oh, H. Xie, J. Razal, L.J. Hall, J.P. Ferraris, A.G. MacDiarmid, and R.H. Baughman, Fuel-powered artificial muscles, Science 311 (2006), pp. 1580–1583. doi:10.1126/science.1120182
  • D. Suppiger, S. Busato, P. Ermanni, M. Motta, and A. Windle, Electromechanical actuation of macroscopic carbon nanotube structures: Mats and aligned ribbons, Phys. Chem. Chem. Phys. 11 (2009), pp. 5180–5185. doi:10.1039/b822862k
  • J. Riemenschneider, H. Temmen, and H.-P. Monner, CNT based actuators: experimental and theoretical investigation of the in-plain strain generation, J. Nanosci. Nanotech. 7 (2007), pp. 3359–3364. doi:10.1166/jnn.2007.837
  • G. Sun, J. Kürti, M. Kertesz, and R.H. Baughman, Dimensional changes as a function of charge injection in single-walled carbon nanotubes, J. Amer. Chem. Soc. 124 (2002), pp. 15076–15080. doi:10.1021/ja020616j
  • G. Spinks, G.G. Wallace, L.S. Fifield, L.R. Dalton, A. Mazzoldi, D. De Rossi, I.I. Khayrullin, and R.H. Baughman, Pneumatic carbon nanotube actuators, Adv. Mater. 14 (2002), pp. 1728–1732. doi:10.1002/1521-4095(20021203)14:23<1728::AID-ADMA1728>3.0.CO;2-8
  • P.G. Whitten, G.M. Spinks, and G.G. Wallace, Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes, Carbon 43 (2005), pp. 1891–1896. doi:10.1016/j.carbon.2005.02.038
  • S. Gupta, M. Hughes, A.H. Windle, and J. Robertson, In situ raman spectroelectrochemistry study of single-wall carbon nanotube mat, Diam. Relat. Mater. 13 (2004), pp. 1314–1321. doi:10.1016/j.diamond.2003.10.015
  • L. Kavan, P. Rapta, and L. Dunsch, In situ raman and vis-nir spectroelectrochemistry at single-walled carbon nanotubes, Chem. Phy. Lett. 328 (2000), pp. 363–368. doi:10.1016/S0009-2614(00)00940-4
  • P. Corio, P.S. Santos, V.W. Brar, G.G. Samsonidze, S.G. Chou, and M.S. Dresselhaus, Potential dependent surface raman spectroscopy of single wall carbon nanotube films on platinum electrodes, Chem. Phy. Lett. 370 (2003), pp. 675–682. doi:10.1016/S0009-2614(03)00157-X
  • K. Murakoshi and K.-I. Okazaki, Electrochemical potential control of isolated single-walled carbon nanotubes on gold electrode, Electrochimica Acta 50 (2005), pp. 3069–3075. doi:10.1016/j.electacta.2004.12.045
  • M. Kalbac, H. Farhat, L. Kavan, J. Kong, K.-I. Sasaki, R. Saito, and M.S. Dresselhaus, Electrochemical charging of individual single-walled carbon nanotubes, ACS Nano 3 (2009), pp. 2320–2328. doi:10.1021/nn9004318
  • S. Roth and R.H. Baughman, Actuators of individual carbon nanotubes, Cur. App. Phy. 2 (2002), pp. 311–314. doi:10.1016/S1567-1739(02)00116-5
  • T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, and Z. Shen, Raman mapping investigation of graphene on transparent, flexible substrate: The strain effect, J. Phys. Chem. C Lett. 112 (2008), pp. 12602–12605. doi:10.1021/jp806045u
  • A. De La Vega, I.A. Kinloch, R.J. Young, W. Bauhofer, and K. Schulte, Simultaneous global and local strain sensing in swcnt-epoxy composites by raman and impedance spectroscopy, Comp. Sci. Tech. 71 (2011), pp. 160–166. doi:10.1016/j.compscitech.2010.11.004
  • H. Yoon, J. Xie, J.K. Abraham, V.K. Varadan, and P.B. Ruffin, Passive wireless sensors using electrical transition of carbon nanotube junctions in polymer matrix, Smart Mater. Struct 15 (2005), pp. 14–20. doi:10.1088/0964-1726/15/1/004
  • X. Yu, R. Rajamani, K.A. Stelson, and T. Cui, Carbon nanotube-based transparent thin film acoustic actuators and sensors, Sens. Actuat. Phys. 132 (2006), pp. 626–631. doi:10.1016/j.sna.2006.02.045
  • Y. Tai, T.K. Bera, Z. Yang, and G. Lubineau, Leveraging a temperature-tunable, scalelike microstructure to produce multimodal, supersensitive sensors, Nanoscale 9 (2017), pp. 7888–7894. doi:10.1039/C7NR01662J
  • Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M.J. Schulz, V. Shanov, P. He, F.J. Boerio, D. Shi, and S. Subramanian, Carbon nanofiber hybrid actuators: Part II - solid electrolyte-based, J. Intell. Mater. Sys. Struc. 17 (2006), pp. 191–198. doi:10.1177/1045389X06057531
  • W. Zheng, J.M. Razal, P.G. Whitten, R. Ovalle-Robles, G.G. Wallace, R.H. Baughman, and G.G. Spinks, Artificial muscles based on polypyrrole/carbon nanotube laminates, Adv. Mater 23 (2011), pp. 2966–2970. doi:10.1002/adma.201100512
  • T.I. Schnoor, U. Vainio, L.-H. Shao, E.T. Lilleodden, M. Mueller, A. Schreyer, K. Schulte, and B. Fiedler, Nanostructured mwcnt/polypyrrole actuators with anisotropic strain response, Carbon. 18 (2015), pp. 597–607.
  • S. Lu and B. Panchapakesan, Optically driven nanotube actuators, Nanotech. 16 (2005), pp. 2548–2554. doi:10.1088/0957-4484/16/11/014
  • Y. Wang and J.T.W. Yeow, A review of carbon nanotubes-based gas sensors, J. Sens. 2009 (2009), pp. Article ID 493904.
  • F.H. Gojny, M.H.G. Wichmann, U. Kpke, B. Fiedler, and K. Schulte, Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content, Compos. Sci. Technol. 64 (2004), pp. 2363–2371. doi:10.1016/j.compscitech.2004.04.002
  • S.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun, C. Choi, J. Di, Y.J. Oh, J.P. Oviedo, J. Bykova, S. Fang, N. Jiang, Z. Liu, R. Wang, P. Kumar, R. Qiao, S. Priya, K. Cho, M. Kim, M.S. Lucas, L.F. Drmmy, B. Maruyama, D.Y. Lee, X. Lepr, E. Gao, D. Albarq, R. Ovalle-Robles, S.J. Kim, and R.H. Baughman, Harvesting electrical energy from carbon nanotube yarn twist, Science 357 (2017), pp. 773–778. doi:10.1126/science.aam8771
  • F. Bguin, V. Presser, A. Balducci, and E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater 26 (2014), pp. 2219–2251. doi:10.1002/adma.201304137
  • Y. Sun, R. Wilson, and D.I. Schuster, High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents, J. A. Chem. Soc. 123 (2001), pp. 5348–5349. doi:10.1021/ja0041730
  • S. Rips and M.J. Hartmann, Quantum information processing with nanomechanical qubits, Phys. Rev. Lett. 110 (2013), pp. 120503. doi:10.1103/PhysRevLett.110.120503
  • U. Koslido, M. Omastova, M. Micusik, G. CiriC-Marjanovic, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric, and T. Bauernhansl, Nanocarbon based ionic actuators - a review, Smart Mater. Struc. 22 (2013), pp. 104022. doi:10.1088/0964-1726/22/10/104022
  • E.R. Nightingale, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem. 63 (1959), pp. 1381–1387. doi:10.1021/j150579a011
  • M.H. Haque, I. Kolaric, U. Vohrer, T. Wallmersperger, M. Dóttavio, and B. Kroplin, Multiwalled carbon-nanotubes-sheet actuators: Theoretical and experimental investigations, Proc. SPIE. 5759 (2005), pp. 1–11.
  • G. Spinks, G. Wallace, R. Baughman, and L. Dai, Carbon nanotube actuators: Synthesis, properties and performance, in Electroactive Polymer (EAP) Actuators as Artificial Muscles, J. Bar-Cohen, ed., 1st ed., SPIE Press, Bellingham, WA, 2008, pp. 261–295.
  • T. Mirfakhrai, Carbon nanotube yarn actuators, Ph.D. diss., University of British Columbia, 2009.
  • S. Geier, T. Mahrholz, P. Wierach, and M. Sinapius, Experimental investigations of actuators based on carbon nanotube architectures, in Smart Structures and Materials, Selected Papers from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, C.M.S.A. Araujo, ed., 1st ed., Springer International Publishing AG, Heidelberg, 2017, pp. 67–95.
  • J. Wittenburg and E. Pestel, Festigkeitslehre, Ein Lehr- Und Arbeitsbuch, 3rd ed., Springer, Berlin, Heidelberg, New York, 2001.
  • Normenausschuss Kunststoffe (FNK) im DIN, Din En Iso 527-5 Kunststoffe - Bestimmung Der Zugeigenschaften, DIN Deutsches Institut für Normung e. V., Beuth Verlag GmbH 01, 2010, pp. 1–19.
  • C. Lämmel, M. Schneider, M. Weiser, and A. Michaelis, Investigations of electrochemical double layer capacitor (edlc) materials –A comparison of test methods, Mat.-Wiss. U. Werkstofftech 44 (2013), pp. 641–649. doi:10.1002/mawe.201300122
  • R.L. Miller, W.L. Bradford, and N.E. Peters, Specific conductance: Theoretical considerations and application to analytical quality control, U.S. Biol. Survey Water-Supply Paper. 2311 (1988), pp. 116.
  • J. Riemenschneider, Charakterisierung und modellierung von kohlenstoff-nanoröhren basierten aktuatoren, Ph.D. diss., Technical University of Braunschweig, 2008.
  • R. Hayes, N. Borisenko, M.K. Tam, P.C. Howlett, F. Endres, and R. Atkin, Double layer structure of ionic liquids at the au(111) electrode interface: An atomic force microscopy investigation, J. Phys. Chem. C 115 (2011), pp. 6855–6863. doi:10.1021/jp200544b
  • T.M. Arruda, M. Heon, V. Presser, P.C. Hillesheim, S. Dai, Y. Gogotsi, S.V. Kalinin, and N. Blake, In situ tracking of the nanoscale expansion of porous carbon electrodes, Energy Environ. Sci. 6 (2013), pp. 225–231. doi:10.1039/C2EE23707E
  • D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev 41 (1947), pp. 441–501. doi:10.1021/cr60130a002