1,883
Views
6
CrossRef citations to date
0
Altmetric
Articles

Non-classical continuum theories for solid and fluent continua and some applications

, &
Pages 28-89 | Received 03 Aug 2018, Accepted 27 Sep 2018, Published online: 25 Nov 2018

References

  • G. Bayada and G. Łukaszewicz, On micropolar fluids in the theory of lubrication. rigorous derivation of an analogue of the Reynolds equation, Int. J. Eng. Sci. 34 (1996), pp. 1477–1490.
  • A.C. Eringen, Simple microfluids, Int. J. Eng. Sci. 2 (1964), pp. 205–217.
  • A.C. Eringen, Mechanics of micromorphic materials, in Proceeding of 11th International Congress of Applied Mechanics, Munich, H. Gortler, editor, Springer-Verlag, Berlin, 1964, pp. 131–138.
  • A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), pp. 1–18.
  • A.C. Eringen, Mechanics of micromorphic continua, in Mechanics of Generalized Continua, E. Kroner, editor, Springer-Verlag, New York, 1968, pp. 18–35.
  • A.C. Eringen, Theory of micropolar elasticity, in Fracture, H. Liebowitz, editor, Academic Press, New York, 1968, pp. 621–729.
  • A.C. Eringen, Micropolar fluids with stretch, Int. J. Eng. Sci. 7 (1969), pp. 115–127.
  • A.C. Eringen, Balance laws of micromorphic mechanics, Int. J. Eng. Sci. 8 (1970), pp. 819–828.
  • A.C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl. 38 (1972), pp. 480–496.
  • A.C. Eringen, Micropolar theory of liquid crystals, Liquid Cryst. Ordered Fluids 3 (1978), pp. 443–473.
  • A.C. Eringen, Theory of thermo-microstretch fluids and bubbly liquids, Int. J. Eng. Sci. 28 (1990), pp. 133–143.
  • A.C. Eringen, Balance laws of micromorphic continua revisited, Int. J. Eng. Sci. 30 (1992), pp. 805–810.
  • A.C. Eringen, Continuum theory of microstretch liquid crystals, J. Math. Phys. 33 (1992), pp. 4078.
  • A.C. Eringen, Theory of Micropolar Elasticity, Springer, New York, 1999.
  • F. Franchi and B. Straughan, Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity, Int. J. Eng. Sci. 30 (1992), pp. 1349–1360.
  • A.D. Kirwan, Boundary conditions for micropolar fluids, Int. J. Eng. Sci. 24 (1986), pp. 1237–1242.
  • W.T. Koiter, Couple stresses in the theory of elasticity, i and ii, Nederl. Akad. Wetensch. Proc. Ser. B 67 (1964), pp. 17–44.
  • W. Oevel and J. Schröter, Balance equations for micromorphic materials, J. Stat. Phys. 25 (1981), pp. 645–662.
  • A.C. Eringen, A unified theory of thermomechanical materials, Int. J. Eng. Sci. 4 (1966), pp. 179–202.
  • A.C. Eringen, Linear theory of micropolar viscoelasticity, Int. J. Eng. Sci. 5 (1967), pp. 191–204.
  • A.C. Eringen, Theory of micromorphic materials with memory, Int. J. Eng. Sci. 10 (1972), pp. 623–641.
  • J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 45 (2007), pp. 288–307.
  • J.N. Reddy and S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008), pp. 023511.
  • J.N. Reddy. Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, Int. J. Eng. Sci. 48, 11(11, 2010), pp. 1507–1518.
  • P. Lu, P.Q. Zhang, H.P. Leo, C.M. Wang, and J.N. Reddy, Nonlocal elastic plate theories, Proc. Royal Soc. 463 (2007), pp. 3225–3240.
  • J.F.C. Yang and R.S. Lakes, Experimental study of micropolar and couple stress elasticity in compact bone in bending, J. Biomech. 15 (1982), pp. 91–98.
  • V.A. Lubarda and X. Markenscoff, Conservation integrals in couple stress elasticity, J. Mechanics Phys. Solids. 48 (2000), pp. 553–564.
  • H.M. Ma, X.L. Gao, and J.N. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mechanics Phys. Solids. 56 (2008), pp. 3379–3391.
  • H.M. Ma, X.L. Gao, and J.N. Reddy, A nonclassical Reddy-Levinson beam model based on modified couple stress theory, J. Multiscale Computational Eng. 8 (2010), pp. 167–180.
  • J.N. Reddy, Microstructure dependent couple stress theories of functionally graded beams, J. Mechanics Phys. Solids. 59 (2011), pp. 2382–2399.
  • J.N. Reddy and A. Arbind, Bending relationship between the modified couple stress-based functionally graded timoshenko beams and homogeneous bernoulli-euler beams, Ann. Solid Struc. Mech. 3 (2012), pp. 15–26.
  • A.R. Srinivasa and J.N. Reddy, A model for a constrained, finitely deforming elastic solid with rotation gradient dependent strain energy and its specialization to Von Kármán plates and beams, J. Mechanics Phys. Solids. 61 (2013), pp. 873–885.
  • R.J. Mora and A.M. Waas, Evaluation of the micropolar elasticity constants for honeycombs, Acta Mechanica 192 (2007), pp. 1–16.
  • P.R. Onck, Cosserat modeling of cellular solids, C. R. Mecanique 330 (2002), pp. 717–722.
  • P.H. Segerstad, S. Toll, and R. Larsson, A micropolar theory for the finite elasticity of open-cell cellular solids, Proc. Royal Soc. 465 (2009), pp. 843–865.
  • H. Altenbach and V.A. Eremeyev, On the linear theory of micropolar plates, ZAMM-J. App. Math. Mech 89 (2009), pp. 242–256.
  • H. Altenbach and V.A. Eremeyev, Strain rate tensors and constitutive equations of inelastic micropolar materials, Int. J. Plasticity 63 (2014), pp. 3–17.
  • H. Altenbach, V.A. Eremeyev, L.P. Lebedev, and L.A. Rendón, Acceleration waves and ellipticity in thermoelastic micropolar media, Archive Appl. Mech. 80 (2010), pp. 217–227.
  • H. Altenbach, G.A. Maugin, and V. Erofeev, Mechanics of generalized continua, Vol. 7, Springer, Berlin, 2011.
  • H. Altenbach, K. Naumenko, and P.A. Zhilin, A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions, Continuum Mech. Thermodynamics 15 (2003), pp. 539–570.
  • F. Ebert, A similarity solution for the boundary layer flow of a polar fluid, Chem. Eng. J. 5 (1973), pp. 85–92.
  • V.A. Eremeyev, L.P. Lebedev, and H. Altenbach. Kinematics of micropolar continuum, Foundations Micropol. Mech. Chapter 2 (2013), pp. 11–13. Springer.
  • V.A. Eremeyev and W. Pietraszkiewicz, Material symmetry group and constitutive equations of anisotropic Cosserat continuum, Generalized Continua Models Mater. (2012), pp. 10.
  • V.A. Eremeyev and W. Pietraszkiewicz, Material symmetry group of the non-linear polar-elastic continuum, Int. J. Solids. Struct. 49 (2012), pp. 1993–2005.
  • E.F. Grekova, Ferromagnets and Kelvin’s medium: basic equations and wave processes, J. Computational Acoust. 9 (2001), pp. 427–446.
  • E.F. Grekova, Linear reduced Cosserat medium with spherical tensor of inertia, where rotations are not observed in experiment, Mech. Solids 47 (2012), pp. 538–543.
  • E.F. Grekova, M.A. Kulesh, and G.C. Herman, Waves in linear elastic media with microrotations, part 2: isotropic reduced Cosserat model, Bull. Seismological Soc. America 99 (2009), pp. 1423–1428.
  • G. Grioli. Linear micropolar media with constrained rotations, Micropol. Elasticity 151 (1974), pp. 45–71. Springer.
  • E.F. Grekova and G.A. Maugin, Modelling of complex elastic crystals by means of multi-spin micromorphic media, Int. J. Eng. Sci. 43 (2005), pp. 494–519.
  • G. Grioli, Microstructures as a refinement of cauchy theory. problems of physical concreteness, Continuum Mech. Thermodynamics 15 (2003), pp. 441–450.
  • J. Altenbach, H. Altenbach, and V.A. Eremeyev, On generalized Cosserat-type theories of plates and shells: A short review and bibliography, Archive Appl. Mech. 80 (2010), pp. 73–92.
  • M. Lazar and G.A. Maugin, Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci. 43 (2005), pp. 1157–1184.
  • M. Lazar and G.A. Maugin, Defects in gradient micropolar elasticity —I: Screw dislocation, J. Mech. Phys. Solids 52 (2004), pp. 2263–2284.
  • G.A. Maugin, A phenomenological theory of ferroliquids, Int. J. Eng. Sci. 16 (1978), pp. 1029–1044.
  • G.A. Maugin, Wave motion in magnetizable deformable solids, Int. J. Eng. Sci. 19 (1981), pp. 321–388.
  • G.A. Maugin, On the structure of the theory of polar elasticity, Philosophical Trans. Royal Soc. London. Ser. A: Mathematical, Phys. Eng. Sci. 356 (1998), pp. 1367–1395.
  • W. Pietraszkiewicz and V.A. Eremeyev, On natural strain measures of the non-linear micropolar continuum, Int. J. Solids. Struct. 46 (2009), pp. 774–787.
  • E. Cosserat and F. Cosserat, Théorie des Corps Déformables, Hermann, Paris, 1909.
  • A.V. Zakharov and E.L. Aero, Statistical mechanical theory of polar fluids for all densities, Phys A: Stat. Mech. Appl. 160 (1989), pp. 157–165.
  • A.E. Green, Micro-materials and multipolar continuum mechanics, Int. J. Eng. Sci. 3 (1965), pp. 533–537.
  • A.E. Green and R.S. Rivlin, The relation between director and multipolar theories in continuum mechanics, ZAMP 18 (1967), pp. 208–218.
  • A.E. Green and R.S. Rivlin, Multipolar continuum mechanics, Arch. Ration. Mech. Anal. 17 (1964), pp. 113–147.
  • L.C. Martins, R.F. Oliveira, and P. Podio-Guidugli, On the vanishing of the additive measures of strain and rotation for finite deformations, J. Elast. 17 (1987), pp. 189–193.
  • L.C. Martins and P. Podio-Guidugli, On the local measures of mean rotation in continuum mechanics, J. Elast. 27 (1992), pp. 267–279.
  • W. Nowacki, Theory of micropolar elasticity, Springer, Vienna, 1970.
  • F.A.C.M. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids. Struct. 39 (2002), pp. 2731–2743.
  • K.S. Surana, Advanced Mechanics of Continua, CRC/Taylor and Francis, Boca Raton, FL, 2015.
  • K.S. Surana, A.D. Joy, and J.N. Reddy, Non-classical continuum theory for solids incorporating internal rotations and rotations of cosserat theories, Continuum Mech. Thermodynamics 29 (2017), pp. 665–698.
  • A.C. Eringen, Mechanics of Continua, John Wiley and Sons, New York, 1967.
  • J.N. Reddy, An Introduction to Continuum Mechanics: With Application, Cambridge University Press, Cambridge, 2008.
  • K.S. Surana, R.S. Shanbhag, and J.N. Reddy. Necessity of law of balance of moment of moments in non-classical continuum theories for solid continua, Meccanica. 53, 11 (September 2018), pp. 2939–2972.
  • K.S. Surana, S.W. Long, and J.N. Reddy. Necessity of law of balance/equilibrium of moment of moments in non-classical continuum theories for fluent continua, Acta Mechanica. 22, 7 (July 2018), pp. 2801–2833.
  • W. Prager, Strain hardening under combined stresses, J. Appl. Phys. 16 (1945), pp. 837–840.
  • M. Reiner, A mathematical theory of dilatancy, Am. J. Math. 67 (1945), pp. 350–362.
  • J.A. Todd, Ternary quadratic types, Philos. Trans. R Soc. Lond A 241 (1948), pp. 399–456.
  • R.S. Rivlin and J.L. Ericksen, Stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), pp. 323–425.
  • R.S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, J. Rational Mech. Anal. 4 (1955), pp. 681–702.
  • C.C. Wang, On representations for isotropic functions, Part. I. Arch. Ration. Mech. Anal. 33 (1969), pp. 249.
  • C.C. Wang, On representations for isotropic functions, Part II. Arch. Ration. Mech. Anal. 33 (1969), pp. 268.
  • C.C. Wang, A new representation theorem for isotropic functions, Part I and Part II, Arch. Ration. Mech. Anal. 36 (1970), pp. 166–223.
  • C.C. Wang, Corrigendum to `Representations for isotropic functions’, Arch. Ration. Mech. Anal. 43 (1971), pp. 392–395.
  • G.F. Smith, On a fundamental error in two papers of C.C. Wang, `On representations for isotropic functions, Part I and Part II’, Arch. Ration. Mech. Anal. 36 (1970), pp. 161–165.
  • G.F. Smith, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Int. J. Eng. Sci. 9 (1971), pp. 899–916.
  • A.J.M. Spencer and R.S. Rivlin, The theory of matrix polynomials and its application to the mechanics of isotropic continua, Arch. Ration. Mech. Anal. 2 (1959), pp. 309–336.
  • A.J.M. Spencer and R.S. Rivlin, Further results in the theory of matrix polynomials, Arch. Ration. Mech. Anal. 4 (1960), pp. 214–230.
  • A.J.M. Spencer, Chapter 3 `Treatise on continuum physics, I, in Theory of Invariants, A.C. Eringen, ed., Academic Press, New York, 1971, pp. 239–353.
  • J.P. Boehler, On irreducible representations for isotropic scalar functions, J. Appl. Math. Mech. 57 (1977), pp. 323–327.
  • Q.S. Zheng, On the representations for isotropic vector-valued, symmetric tensor-valued and skew-symmetric tensor-valued functions, Int. J. Eng. Sci. 31 (1993), pp. 1013–1024.
  • Q.S. Zheng, On transversely isotropic, orthotropic and relatively isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors, Int. J. Eng. Sci. 31 (1993), pp. 1399–1453.
  • K.S. Surana, A.D. Joy, and J.N. Reddy. Ordered rate constitutive theories for thermoviscoelastic solids without memory incorporating internal and cosserat rotations, Acta Mechanica. 229, 8 (August 2018), pp. 3189–3213.
  • K.S. Surana, A.D. Joy, and J.N. Reddy. Ordered rate constitutive theories for non-classical thermoviscoelastic solids with memory incorporating internal and cosserat rotations, Continuum Mech. Thermodynamics (July,2018). in press. doi:10.1007/s00161-018-0697-8
  • K.S. Surana, M.J. Powell, and J.N. Reddy, A more complete thermodynamic framework for solid continua, J. Thermal Eng. 1 (2015), pp. 446–459.
  • K.S. Surana, J.N. Reddy, D. Nunez, and M.J.A. Powell, Polar continuum theory for solid continua, Int. J. Eng. Res. Ind. Appl. 8 (2015), pp. 77–106.
  • K.S. Surana, M.J. Powell, and J.N. Reddy, Constitutive theories for internal polar thermoelastic solid continua, J. Pure Appl. Mathematics: Adv. Appl. 14 (2015), pp. 89–150.
  • K.S. Surana, F. Mohammadi, J.N. Reddy, and A.S. Dalkilic, Ordered rate constitutive theories for non-classical internal polar thermoviscoelastic solids without memory, Int. J. Mathematics, Science, Eng. Appl. (IJMSEA) 10 (2016), pp. 99–131.
  • K.S. Surana, D. Mysore, and J.N. Reddy. Ordered rate constitutive theories for non-classical thermoviscoelastic solids with dissipation and memory incorporating internal rotations, Polytechnica (17 July, 2018). in press. doi: 10.1007/s41050-018-0004-2
  • K.S. Surana, A.D. Joy, and J.N. Reddy. Non-classical continuum theory for fluids incorporating internal and cosserat rotation rates, Continuum Mech. Thermodynamics. 29, 6 (November 2017), pp. 1249–1289.
  • K.S. Surana, A.D. Joy, and J.N. Reddy, Ordered rate constitutive theories for non-classical thermoviscoelastic fluids incorporating internal and cosserat rotation rates, Int. J. Appl. Mech. 10, 2 (2018). doi:10.1142/S1758825118500126.
  • K.S. Surana, M.J. Powell, and J.N. Reddy, A more complete thermodynamic framework for fluent continua, J. Thermal Eng. 1 (2015), pp. 460–475.
  • K.S. Surana, M.J. Powell, and J.N. Reddy, A polar continuum theory for fluent continua, Int. J. Eng. Res. Ind. Appl. 8 (2015), pp. 107–146.
  • K.S. Surana, M.J. Powell, and J.N. Reddy, Ordered rate constitutive theories for internal polar thermofluids, Int. J. Mathematics, Science, Eng. Appl. 9 (2015), pp. 51–116.
  • K.S. Surana, S.W. Long, and J.N. Reddy, Rate constitutive theories of orders n and 1n for internal polar non-classical thermofluids without memory, Appl. Math. 7 (2016), pp. 2033–2077.
  • A.C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10 (1972), pp. 1–16.
  • A.C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54, 9 (February 1983), pp. 4703–4710.
  • A.C. Eringen, Nonlocal continuum field theories, Springer, New York, 2002.
  • A.C. Eringen and D.G.B. Edelen. On nonlocal elasticity, Int. J. Eng. Sci. 10, 3 (March 1972), pp. 233–248.
  • K.S. Surana, J.N. Reddy, and D. Mysore Thermodynamic consistency of beam theories in the context of classical and non-classical continuum mechanics and a kinematic assumption free new formulation. (in the process of being submitted for publication), 2018.