1,972
Views
2
CrossRef citations to date
0
Altmetric
Articles

Algorithm for the layout of a piezoelectric element in an elastic medium providing the maximal piezoelectric effect within a specified frequency range

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 268-284 | Received 18 Jul 2018, Accepted 13 Jan 2019, Published online: 14 Feb 2019

References

  • N.W. Hagood and A. Von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, J. Sound Vib. 146 (2) (1991), pp. 243–268. doi:10.1016/0022-460X(91)90762-9.
  • J.J. Hollkamp, Multimodal passive vibration suppression with piezoelectric materials and resonant shunts, J. Intell. Mater. Syst. Struct. 5 (1994), pp. 49–56. doi:10.1177/1045389X9400500106.
  • S.Y. Wu, Method for multiple mode shunt damping of structural vibration using a single PZT transducer, Smart Struct. Mater. Smart Struct. Int. Sys. Proc. SPIE. 3327 (1998), pp. 159–168.
  • S.Y. Wu, Multiple PZT transducers implemented with multiple-mode piezoelectric shunting for passive vibration damping, Smart Struct. Mater. Passive Damp. Iso. Proc. SPIE. 672 (1999), pp. 112–122.
  • S.Y. Wu and A.S. Bicos, Structural vibration damping experiments using improved piezoelectric shunts, Smart Struct. Mater. Passive Damp. Iso. Proc. SPIE. 3045 (1997), pp. 40–50.
  • S. Behrens and S.O.R. Moheimani, Current flowing multiple mode piezoelectric shunt dampener, Proceedings of SPIE 4697, Smart Structures and Materials 2002: Damping and Isolation, San Diego, CA, 2002.
  • S. Behrens, S.O.R. Moheimani, and A.J. Fleming, Multiple mode passive piezoelectric shunt dampener, Proc. IFAC Mechatronics 35 (2002), pp. 161–166.
  • A.J. Fleming and S.O.R. Moheimani, Adaptive piezoelectric shunt damping, Smart Mater. Struct. 1 (2003), pp. 36–48. doi:10.1088/0964-1726/12/1/305.
  • S. Behrens and S.O.R. Moheimani, Optimal resistive elements for multiple mode shunt damping of a piezoelectric laminate beam, 39th IEEE Conference on Decision and Control, 4 (2000), pp. 4018–4023, Sydney, NSW, Australia, 2000.
  • T.H. Cheng and I.K. Oh, A current-flowing electromagnetic shunt damper for multi-mode vibration control of cantilever beams, Smart Mater Struct. 18 (2009), pp. 095036.
  • S. Vidoli and F. dell’Isola, Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks, Eur. J. Mech./A Solids 20 (2001), pp. 435–456. doi:10.1016/S0997-7538(01)01144-5.
  • M. Porfri, F. dell’Isola, and F.M.F. Mascioli, Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers, Int. J. Circ. Theor. Appl. 32 (2004), pp. 167–198. doi:10.1002/cta.273.
  • F. dell’Isola, E.G. Henneke, and M. Porfiri, Piezoelectromechanical structures: New trends towards the multimodal passive vibration control, Smart Struct. Mater. Passive Damp. Iso. Proc. SPIE. 5052 (2003), pp. 392–402.
  • C. Maurini, F. dell’Isola, and D.D. Vescovo, Comparison of piezoelectronic networks acting as distributed vibration absorbers, Mech. Sys. Signal Proc. 18 (5) (2004), pp. 1243–1271. doi:10.1016/S0888-3270(03)00082-7.
  • I. Giorgio, A. Culla, and D. Del Vescovo, Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network, Arch. Appl. Mech. 79 (2009), pp. 859–879.
  • F.A.C. Viana and V. Steffen Jr., Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits, J. Of the Braz. Soc. Of Mech. Sci. & Eng. XXVIII (3) (2006), pp. 293–310. doi:10.1590/S1678-58782006000300007.
  • F. Casadei, M. Ruzzene, L. Dozio, and K.A. Cunefare, Broadband vibration control through periodic arrays of resonant shunts: Experimental investigation on plates, Smart Mater Struct. 19 (2010), pp. 015002
  • B. Lossouarn, J.-F. Deü, and M. Aucejo, Multimodal vibration damping of a beam with a periodic array of piezoelectric patches connected to a passive electrical network, Smart Mater Struct. 24 (2015), pp. 115037.
  • F. Botta, D. Dini, S. Gentili, C. Schwingshackl, L. Di Mare, and G. Cerri, Optimal placement of piezoelectric plates to control multimode vibrations of a beam, Adv. Acoust. Vib. 2013 (2013), pp. 905160.
  • F. Botta, A. Scorza, and A. Rossi, Optimal piezoelectric potential distribution for controlling multimode vibrations, Appl. Sci. 8 (2018), pp. 551. doi:10.3390/app8040551.
  • Q. Huang, S. Chen, H. Pu, and N. Zhang, Optimal piezoelectric actuators and sensors configuration for vibration suppression of aircraft framework using particle swarm algorithm, Math. Prob. Eng. 2017 (2017), pp. 7213125. doi:10.1155/2017/7213125.
  • E.F. Crawley and J. de Luis, Use of piezoelectric actuators as elements of intelligent structures, Aiaa J. 25 (10) (1987), pp. 1373–1385. doi:10.2514/3.9792.
  • F. Bachmann, A. Bergamini, and P. Ermanni, Optimal piezoelectric positioning a strain-energy based finite element approach, J. Int. Mat. Syst. Struct. 23 (14) (2012), pp. 1575–1591. doi:10.1177/1045389X12447985.
  • K. Ramesh and S. Narayanan, The optimal location of piezoelectric actuators and sensors for vibration control of plates, Smart Mater. Struct. 16 (2007), pp. 2680–2691. doi:10.1088/0964-1726/16/6/073.
  • M. Hasanlu, A. Bagheri, and F. Najafi, Optimal placement of piezoelectric S/A for active vibration control of engineering structures by using controller design, J. Eng. Tech. 5 (2016), pp. 22–44.
  • V. Gupta, M. Sharma, and N. Thakur, Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review, J. Int. Mat. Syst. Struct. 21 (8) (2010), pp. 1227–1243. doi:10.1177/1045389X10381659.
  • J. Ducarne, O. Thomas, and J.-F. Deu, Placement and dimension optimization of shunted piezoelectric patches for vibration reduction, J. Sound Vib. 331 (2013), pp. 3286–3303. doi:10.1016/j.jsv.2012.03.002.
  • A. Belloli and P. Ermanni, Optimum placement of piezoelectric ceramic modules for vibration suppression of highly constrained structures, Smart Mater. Struct. 16 (2007), pp. 1662–1671.
  • H. Ning, Optimal number and placements of piezoelectric patch actuators in structural active vibration control, Eng. Comput. 21 (2004), pp. 651–665. doi:10.1108/02644400410545218.
  • A.M. Sadri, J.R. Wright, and R.J. Wynne, Modeling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithms, Smart Mater. Struct. 9 (1999), pp. 490–498. doi:10.1088/0964-1726/8/4/306.
  • S.S. Rao and P.T. Shii, Optimal placement of actuators in actively controlled structures using genetic algorithms, AIAA J. 29 (6) (1991), pp. 942–943. doi:10.2514/3.10683.
  • D. Chhabra, G. Bhushan, and P. Chandna, Optimal placement of piezoelectric actuators on plate structures for active vibration control via modified control matrix and singular value decomposition approach using modified heuristic genetic algorithm, Mech. Adv. Mater. Struct. 23 (3) (2016), pp. 272–280. doi:10.1080/15376494.2014.949932.
  • I. Bruant, L. Gallimard, and S. Nikoukar, Optimization of piezoelectric sensors location and number using a genetic algorithm, Mech. Adv. Mater. Struct. 18 (7) (2011), pp. 469–475. doi:10.1080/15376494.2011.604600.
  • J.M. Hale and A.H. Daraji, Optimal placement of sensors and actuators for active vibration reduction of a flexible structure using a genetic algorithm based on modified H infinity, J. Phys. 382 (2012), pp. 012036.
  • S.T. Quek, S.Y. Wang, and K.K. Ang, Vibration control of composite plates via optimal placement of piezoelectric patches, J. Intell. Mater. Syst. Struct. 14 (4–5) (2003), pp. 229–245. doi:10.1177/1045389X03034686.
  • K.R. Kumar and S. Narayanan, The optimal location of piezoelectric sensor and actuators for vibration control of plates, J. Smart Mater. Struct. 16 (2007), pp. 2680–2691. doi:10.1088/0964-1726/16/6/073.
  • K. Morris and S. Yang, Comparison of actuator placement criteria for control of structures, J. Sound Vib. 353 (2015), pp. 1–18. doi:10.1016/j.jsv.2015.05.002.
  • N.V. Sevodina, N.A. Yurlova, and D.A. Oshmarin, The optimal placement of the piezoelectric element in a structure based on the solution of the problem of natural vibrations, Solid State Phenom. 243 (2015), pp. 67–74. doi:10.4028/www.scientific.net/SSP.243.67.
  • Q. Wang and C. Wang, A controllability index for optimal design of piezoelectric actuators in vibration control of beam structures, J. Sound Vib. 242 (3) (2001), pp. 507–518. doi:10.1006/jsvi.2000.3357.
  • Z. Liu, D. Wang, H. Hu, and M. Yu, Measures of modal controllability and observability in vibration control of flexible structures, J. Guid. Contr. Dyn. 17 (6) (1994), pp. 1377–1380. doi:10.2514/3.21363.
  • D.A. Oshmarin, M.A. Iurlov, N.V. Sevodina, and N.A. Iurlova, Passive multimodal damping of vibrations in structures with piezoelectric elements and external electric circuits, 8th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2017) and 6th International Conference on Smart Materials and Nanotechnology in Engineering. pp. 1125–1136, , Madrid, Spain, 2017.
  • N.A. Iurlova, V.P. Matveenko, D.A. Oshmarin, N.V. Sevodina, and M.A. Yurlov, Layout optimization of piezoelectric elements with external electric circuits in smart constructions based on solution of the natural vibrations problem, VIIth ECCOMAS Congress 2016, Crete, Greece, 2016.
  • Ansys 17.2 Documentation, SAS IP, Inc, Canonsburg, 2016.
  • V.P. Matveenko, N.A. Iurlova, D.A. Oshmarin, N.V. Sevodina, and M.A. Iurlov, An approach to determination of shunt circuits parameters for damping vibrations, Int. J. Smart and Nano Mater. 9 (2) (2018), pp. 135–149. doi:10.1080/19475411.2018.1461144.
  • V.P. Matveenko, D.A. Oshmarin, N.V. Sevodina, and N.A. Yurlova, Natural vibration problem for electroviscoelstic body with external electric circuits and finite-element relations for its numerical implementation, Comp. Cont. Mech. 9 (2016), pp. 476–485.