2,649
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Printing ionic polymer metal composite actuators by fused deposition modeling technology

, , , ORCID Icon, &
Pages 218-231 | Received 27 Dec 2020, Accepted 06 Apr 2021, Published online: 10 May 2021

References

  • Baughman RH. Playing nature’s game with artificial muscles. Science. 2005;308(5718):63–65.
  • Haines CS, Lima MD, Li N, et al. Artificial muscles from fishing line and sewing thread. Science. 2014;343(6173):868–872. .
  • Lima MD, Li N, De Andrade MJ, et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science. 2012;338(6109):928–932. .
  • Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J Appl Phys. 2003;93(9):5255–5267.
  • Li JZ, Ma WJ, Song L, et al. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 2011;11(11):4636–4641. .
  • Yan YS, Santaniello T, Bettini LG, et al. Electroactive ionic soft actuators with monolithically integrated gold nanocomposite electrodes. Adv Mater. 2017;29(23):1606109. .
  • Nemat-Nasser S. Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys. 2002;92(5):2899–2915.
  • Kim J, Bae SH, Kotal M, et al. Soft but powerful artificial muscles based on 3D graphene-CNT-Ni Heteronanostructures. Small. 2017;13(31):1701314. .
  • Yang D, Kong XX, Ni YF, et al. Ionic polymer-metal composites actuator driven by the pulse current signal of triboelectric nanogenerator. Nano Energy. 2019;66:104139.
  • Lei R, Shi YS, Ding YF, et al. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energ Environ Sci. 2020;13(7):2178–2190. .
  • He QS, Huo K, Xu XR, et al. The square rod-shaped ionic polymer-metal composite and its application in interventional surgical guide device. Int J Smart Nano Mater. 2020;11(2):159–172. .
  • Feng GH, Chen RH. Fabrication and characterization of arbitrary shaped μIPMC transducers for accurately controlled biomedical applications. Sensor Actuat A-Phys. 2008;143(1):34–40.
  • Ma SQ, Zhang YP, Liang YH, et al. High-performance ionic-polymer-metal composite: toward large-deformation fast-response artificial muscles. Adv Funct Mater. 2019;30(7):1908508. .
  • Fang BK, Lin CCK, Ju MS. Development of sensing/actuating ionic polymer-metal composite (IPMC) for active guide-wire system. Sensor Actuat A-Phys. 2010;158(1):1–9.
  • Ruiz S, Mead B, Palmre V, et al. A cylindrical ionic polymer-metal composite-based robotic catheter platform: modeling, design and control. Smart Mater Struct. 2014;24(1):015007. .
  • Yoon WJ, Reinhall PG, Seibel EJ. Analysis of electro-active polymer bending: a component in a low cost ultrathin scanning endoscope. Sensor Actuat A-Phys. 2007;133(2):506–517.
  • Shahinpoor M, Kim KJ. Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct. 2004;14(1):197–214.
  • Chen Z, Tan XB. Monolithic fabrication of ionic polymer-metal composite actuators capable of complex deformation. Sensor Actuat A-Phys. 2010;157(2):246–257.
  • Palmre V, Hubbard JJ, Fleming M, et al. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct. 2012;22(1):014003. .
  • He QS, Yang X, Wang ZY, et al. Advanced electro-active dry adhesive actuated by an artificial muscle constructed from an ionic polymer metal composite reinforced with nitrogen-doped carbon nanocages. J Bionic Eng. 2017;14(3):567–578. .
  • Park JH, Lee SW, Song DS, et al. Highly enhanced force generation of ionic polymer–metal composite actuators via thickness manipulation. ACS Appl Mater Inter. 2015;7(30):16659–16667. .
  • Bonomo C, Bottino M, Brunetto P, et al. Tridimensional ionic polymer metal composites: optimization of the manufacturing techniques. Smart Mater Struct. 2010;19(5):055002. .
  • Tiwari R, Kim KJ. Disc-shaped ionic polymer metal composites for use in mechano-electrical applications. Smart Mater Struct. 2010;19(6):065016.
  • Lee SJ, Han MJ, Kim SJ, et al. A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater Struct. 2006;15(5):1217–1224. .
  • Trabia S, Hwang T, Kim KJ. A fabrication method of unique Nafion® shapes by painting for ionic polymer-metal composites. Smart Mater Struct. 2016;25(8):085006.
  • Malone E, Lipson H. Freeform fabrication of ionomeric polymer-metal composite actuators. Rapid Prototyping J. 2006;12(5):244–253.
  • Luo B, Chen HL, Zhu ZC, et al. Printing single-walled carbon nanotube/Nafion composites by direct writing techniques. Mater Design. 2018;155(5):125–133. .
  • Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371–378.
  • Matsuzaki R, Ueda M, Namiki M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep. 2016;23058(6):1–7.
  • Walker DA, Hedrick JL, Mirkin CA. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface. Science. 2019;366(6463):360–364.
  • Carrico JD, Leang KK. Fused filament 3D printing of ionic polymer-metal composites for soft robotics. Smart Mater Struct. 2015;24(12):125021.
  • Trabia S, Olsen Z, Kim KJ. Searching for a new ionomer for 3D printable ionic polymer–metal composites: aquivion as a candidate. Smart Mater Struct. 2017;26(11):115029.
  • Trabia S, Choi K, Olsen Z, et al. Understanding the thermal properties of precursor-ionomers to optimize fabrication processes for ionic polymer-metal composites (IPMCs). Materials. 2018;11(5):1–12. .
  • Elliott JA, James PJ, McMaster TJ, et al. Hydrolysis of the Nafion® precursor studied by X-ray scattering and in-situ atomic force microscopy. e-Polymers. 2001;1(1):1–11. .
  • Wang ML, Yu M, Lu MY, et al. Effects of Cu2+ counter Ions on the actuation performance of flexible ionic polymer metal composite actuators. J Bionic Eng. 2018;15(6):1047–1056. .
  • He QS, Yu M, Song LL, et al. Experimental study and model analysis of the performance of IPMC membranes with various thickness. J Bionic Eng. 2011;8(1):77–85.