1,926
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Chinese ink-facilitated fabrication of paper-based composites as electrodes for supercapacitors

, ORCID Icon, , & ORCID Icon
Pages 351-374 | Received 26 May 2021, Accepted 19 Jul 2021, Published online: 04 Aug 2021

References

  • Liu T, Zhang F, Song Y, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures [J]. ?J Mater Chem A. 2017;5(34):17705–17733.
  • Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: a review [J]. ?J Mater Chem A. 2017;5(25):12653–12672.
  • Acharya J, Balasubramaniam G, Raj S, et al. Facile one pot sonochemical synthesis of CoFe2O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications [J]. Int J Hydrogen Energy. 2020;45(4):3073–3085.
  • Ojha GP, Gautam J, Muthurasu A, et al. In-situ fabrication of manganese oxide nanorods decorated manganese oxide nanosheets as an efficient and durable catalyst for oxygen reduction reaction [J]. Colloids Surf A Physicochem Eng Asp. 2019;568:311–318.
  • Acharya J, Ojha GP, Kim B-S, et al. Modish Designation of Hollow-Tubular rGO–NiMoO4 @Ni–Co–S Hybrid Core–shell Electrodes with Multichannel Superconductive Pathways for High-Performance Asymmetric Supercapacitors. ACS Appl Mater Interfaces. 2021;13(15):17487–17500.
  • Ojha GP, Muthurasu A, Dahal B, et al. Oleylamine-assisted synthesis of manganese oxide nanostructures for high-performance asymmetric supercapacitos [J]. J Electroanal Chem. 2019;837:254–265.
  • Jiang H, Lee PS, Li C. 3D carbon based nanostructures for advanced supercapacitors [J]. Energy Environ. Sci 2013;6(1):41–53.
  • Xiao Z, Sun X, Xiuying L, et al. Phase transformation of GeO2 glass to nanocrystals under ambient conditions [J]. Nano Lett. 2018;18(5):3290–3296.
  • Bryan AM, Santino LM, Lu Y, et al. Conducting polymers for pseudocapacitive energy storage [J]. Chem Mater. 2016;28(17):5989–5998.
  • Sahalianov I, Singh SK, Tybrandt K, et al. The intrinsic volumetric capacitance of conducting polymers: pseudo-capacitors or double-layer supercapacitors? [J]. RSC Adv. 2019;9(72):42498–42508.
  • Veerakumar P, Sangili A, Manavalan S, et al. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications [J]. Ind Eng Chem Res. 2020;59(14):6347–6374.
  • Mohammed H Al-Saleh, Uttandaraman Sundararaj. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon. 2009. 47(1):2–22
  • Hirsch A. Functionalization of Single-Walled Carbon Nanotubes. Angew Chem. 2002;41(11):1853–1859.
  • Ma P-C, Siddiqui Naveed A, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review [J]. Compos Part A Appl Sci Manuf. 2010;41(10):1345–1367.
  • Lingjie M, Chuanlong F, Qinghua L. Advanced technology for functionalization of carbon nanotubes [J]. Progress in Natural Science, 2009;19(7):801–810.
  • Rong W, Chao C, Xiuchun YANG. New electrode materials for supercapacitors [J]. Journal of Ceramics, 2018; 39(6):649–660 (in Chinese)
  • Xiao Z, Shijin Y, Yueming L, et al. Materials development and potential applications of transparent ceramics: a review [J]. Mater Sci Eng R Rep. 2020;139:100518.
  • Dai X, Zhang M, Li J, et al. Effects of electrodeposition time on a manganese dioxide supercapacitor [J]. RSC Adv. 2020;10(27):15860–15869.
  • Zhang M, Chen Y, Yang D, et al. High performance MnO2 supercapacitor material prepared by modified electrodeposition method with different electrodeposition voltages [J]. J Energy Storage. 2020;29:101363.
  • Fei H, Chongyang C, Bao H, et al. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)–H2SO4 porous gel electrolytes. J Power Sources. 2014;266:488–495.
  • Winter J. Preliminary investigations on Chinese ink in far eastern paintings [J]. Adv Chem Series. 1975;138:207–225.
  • Tesner P. Soot formation during combustion [J]. Combustion, Explosion, and Shock Waves. 1979;15(2):111–120.
  • Dobbins RA, Fletcher RA, Chang H-C. The evolution of soot precursor particles in a diffusion flame [J]. Combustion and flame. 1998;115(3):285–298.
  • Wei S, Fang X, Cao X, et al. Characterization of the materials used in Chinese ink sticks by pyrolysis-gas chromatography–mass spectrometry [J]. J Anal Appl Pyrolysis. 2011;91(1):147–153.
  • Swider JR, Hackley VA, Winter J. Characterization of Chinese ink in size and surface [J]. J CultHeritage. 2003;4(3):175–186.
  • Watson Ann Y, Valberg Peter A. Carbon black and soot: two different substances [J]. AIHAJ - American Industrial Hygiene Association. 2001;62(2):218–228.
  • Kumari L, Subramanyam SV. Optical properties and electrical transport in intercalated amorphous carbon [J]. Mater Res Bull. 2006;41(11):2000–2006.
  • Sahu V, Shekhar S, Ahuja P, et al. Synthesis of hydrophilic carbon black; role of hydrophilicity in maintaining the hydration level and protonic conduction [J]. RSC Adv. 2013;3(12):3917–3924.
  • Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon. 1995;33(11):1561–1565.
  • Darmstadt H, Roy C, Kaliaguine. Characterization of pyrolytic carbon blacks from commercial tire pyrolysis plants [J]. Carbon. 1995;33(10):1449–1455.
  • Vigolo B, Pénicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes [J]. Science. 2000;290(5495):1331–1334.
  • Yu J, Grossiord N, Koning Cor E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution [J]. Carbon. 2007;45(3):618–623.
  • Xia H, Shirley MY, Yuan G, et al. A Symmetric RuO2∕RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte. Electrochem Solid State Lett. 2012;15(4):A60–A63.
  • Liao Q, Li N, Jin S, et al. All-Solid-State Symmetric Supercapacitor Based on Co3 O 4 Nanoparticles on Vertically Aligned Graphene. ACS Nano. 2015;9(5):5310–5317.
  • Biswal M, Banerjee A, Deo M, et al. From dead leaves to high energy density supercapacitors [J]. Energy Environ Sci. 2013;6(4):1249–1259.
  • Taberna P, Simon P, Fauvarque JF. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors [J]. J Electrochem Soc. 2003;150(3):A292–A300.
  • Bello A, Fashedemi OO, Barzegar F, et al. Microwave synthesis: characterization and electrochemical properties of amorphous activated carbon-MnO2 nanocomposite electrodes [J]. J Alloys Compd. 2016;681:293–300.
  • Zhi M, Manivannan A, Meng F, et al. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors [J]. J Power Sources. 2012;208:345–353.
  • Yuxi X, Zhaoyang L, Xing Z, et al. Holey graphene frameworks for highly efficient capacitive energy storage [J]. Nature Communications. 2014. 5: 4554.
  • Liu F-J. Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)–poly(styrene sulfonic acid)–polyaniline for supercapacitor [J]. J Power Sources. 2008;182(1):383–388.
  • Gao H, Xiao F, Ching CB, et al. High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO 2 . ACS Appl Mater Interfaces. 2012;4(5):2801–2810.
  • Zhou H, Zou X, Zhang Y. Fabrication of TiO2@MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors [J]. Electrochim Acta. 2016;192:259–267.
  • Nagarajan N, Humadi H, Zhitomirsky I. Cathodic electrodeposition of MnOx films for electrochemical supercapacitors [J]. Electrochim Acta. 2006;51(15):3039–3045.
  • Yang J, Lian L, Ruan H, et al. Nanostructured porous MnO2 on Ni foam substrate with a high mass loading via a CV electrodeposition route for supercapacitor application [J]. Electrochim Acta. 2014;136:189–194.
  • Cross A, Morel A, Cormie A, et al. Enhanced manganese dioxide supercapacitor electrodes produced by electrodeposition [J]. J Power Sources. 2011;196(18):7847–7853.
  • Chou S, Cheng F, Chen J. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films [J]. J Power Sources. 2006;162(1):727–734.
  • Chou S-L, Wang J-Z, Chew S-Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J]. Electrochem commun. 2008;10(11):1724–1727.
  • Tahmasebi MH, Raeissi K, Golozar MA, et al. Tailoring the pseudocapacitive behavior of electrochemically deposited manganese-nickel oxide films [J]. Electrochim Acta. 2016;190:636–647.
  • Park SK, Suh DH, Park HS. Electrochemical assembly of reduced graphene oxide/manganese dioxide nanocomposites into hierarchical sea urchin-like structures for supercapacitive electrodes [J]. J Alloys Compd. 2016;668:146–151.
  • Jian-Gan W, Feiyu K, Bingqing W. Engineering of MnO2-based nanocomposites for high-performance supercapacitors [J]. Pro Mater Sci. 2015;74:51–124.
  • Xuguang Y, Pan C, Yuhang G, et al. Preparation of Al3+ doped MnO2 hollow nanospheres and its application in energy storage [J]. Journal of Ceramics, 2019; 40(6):757–763 (in Chinese
  • Zhang A, Gao R, Hu L, et al. Rich bulk oxygen Vacancies-Engineered MnO2 with enhanced charge transfer kinetics for supercapacitor [J]. Chem Eng J. 2021;417:129186.
  • Ma L, Meng N, Zhang Y, et al. Improved electrocatalytic activity of δ-MnO2@MWCNTs by inducing the oriented growth of oxygen reduction products in Li-O2 batteries [J]. Nano Energy. 2019;58:508–516.
  • Dang MN, Nguyen TH, Nguyen TV, et al. One-pot synthesis of manganese oxide/graphene composites via a plasma-enhanced electrochemical exfoliation process for supercapacitors [J]. Nanotechnology. 2020;31(34):345401.
  • Choi BG, Huh YS, Hong WH, et al. Electrochemical assembly of MnO2 on ionic liquid–graphene films into a hierarchical structure for high rate capability and long cycle stability of pseudocapacitors [J]. Nanoscale. 2012;4(17):5394–5400.
  • Ojha GP, Pant B, Muthurasu A, et al. Three-dimensionally assembled manganese oxide ultrathin nanowires: prospective electrode material for asymmetric supercapacitors [J]. Energy. 2019;188:116066.