2,254
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Notch Flexure as Kirigami Cut for Tunable Mechanical Stretchability towards Metamaterial Application

, , &
Pages 203-217 | Received 27 Jan 2022, Accepted 22 Mar 2022, Published online: 07 Apr 2022

References

  • Holmes DP, Yang Y. A cut above: folding and cutting advanced materials[J]. Matter. 2019;1(4):799–800. DOI:10.1016/j.matt.2019.09.005.
  • YuChun H. The origin, classification and evolution of Chinese paper cutting[D]: University of Leeds, 2014.
  • Shan SC, Kang SH, Zhao ZH, et al. Design of planar isotropic negative poisson’s ratio structures[J]. Extreme Mech Lett. 2015;4:96–102. DOI:10.1016/j.eml.2015.05.002.
  • Mizzi L, Azzopardi KM, Attard D, et al. Auxetic metamaterials exhibiting giant negative poisson’s ratios[J]. Physica Status Solidi-Rapid Research Letters. 2015;9(7):425–430. DOI:10.1002/pssr.201510178.
  • Wang GL, Sun SW, Li ME, et al. Large deformation shape optimization of cut-mediated soft mechanical metamaterials[J]. Mater Res Express. 2019;6(5). DOI:10.1088/2053-1591/aaeabc
  • Hamzehei R, Zolfagharian A, Dariushi S, et al. 3D-printed bio-inspired zero Poisson’s ratio graded metamaterials with high energy absorption performance[J]. Smart Mater Struct. 2022;31(3):035001. DOI:10.1088/1361-665X/ac47d6.
  • Noroozi R, Bodaghi M, Jafari H, et al. Shape-Adaptive metastructures with variable bandgap regions by 4D printing[J]. Polymers (Basel). 2020;12(3):519. DOI:10.3390/polym12030519.
  • Bodaghi M, Liao WH. 4D printed tunable mechanical metamaterials with shape memory operations[J]. Smart Mater Struct. 2019;28(4):045019. DOI:10.1088/1361-665X/ab0b6b.
  • Bertoldi K, Vitelli V, Christensen J, et al. Flexible mechanical metamaterials[J]. Nat Rev Mater. 2017;2(11). DOI:10.1038/natrevmats.2017.66
  • Cho Y, Shin JH, Costa A, et al. Engineering the shape and structure of materials by fractal cut[J]. Proc Natl Acad Sci U S A. 2014;111(49):17390–17395. DOI:10.1073/pnas.1417276111.
  • Tang YC, Lin GJ, Han L, et al. Design of hierarchically cut hinges for highly stretchable and reconfigurable metamaterials with enhanced strength[J]. Adv Mater. 2015;27(44):7181–7190. DOI:10.1002/adma.201502559.
  • Sussman DM, Cho Y, Castle T, et al. Algorithmic lattice kirigami: a route to pluripotent materials[J]. Proc Natl Acad Sci U S A. 2015;112(24):7449–7453. DOI:10.1073/pnas.1506048112.
  • Alderete NA, Medina L, Lamberti L, et al. Programmable 3D structures via Kirigami engineering and controlled stretching[J]. Extreme Mech Lett. 2021;43:101146. DOI:10.1016/j.eml.2020.101146.
  • Chen S, Liu Z, Du H, et al. Electromechanically reconfigurable optical nano-kirigami[J]. Nat Commun. 2021;12(1):1299. DOI:10.1038/s41467-021-21565-x.
  • Zhang X, Medina L, Cai H, et al. Kirigami Engineering-Nanoscale structures exhibiting a range of controllable 3D configurations[J]. Adv Mater. 2021;33(5):e2005275. DOI:10.1002/adma.202005275.
  • Zhang YH, Yan Z, Nan KW, et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes[J]. Proc Natl Acad Sci U S A. 2015;112(38):11757–11764. DOI:10.1073/pnas.1515602112.
  • Blees MK, Barnard AW, Rose PA, et al. Graphene kirigami[J]. Nature. 2015;524(7564):204–207. DOI:10.1038/nature14588.
  • Jin LS, Forte AE, Deng BL, et al. Kirigami-Inspired inflatables with programmable shapes[J]. Adv Mater. 2020;32(33). DOI:10.1002/adma.202001863
  • Dias MA, McCarron MP, Rayneau-Kirkhope D, et al. Kirigami actuators[J]. Soft Matter. 2017;13(48):9087–9092. DOI:10.1039/c7sm01693j.
  • Rafsanjani A, Zhang YR, Liu BY, et al. Kirigami skins make a simple soft actuator crawl[J]. Sci Rob. 2018;3(15). DOI:10.1126/scirobotics.aar7555
  • Rafsanjani A, Bertoldi K, Studart AR. Programming soft robots with flexible mechanical metamaterials[J]. Sci Rob. 2019;4(29). DOI:10.1126/scirobotics.aav7874
  • Sedal A, Memar AH, Liu TS, et al. Design of deployable soft robots through plastic deformation of kirigami structures[J]. IEEE Rob Autom Lett. 2020;5(2):2272–2279. DOI:10.1109/Lra.2020.2970943.
  • Yang Y, Vella K, Holmes DP. Grasping with kirigami shells[J]. Sci Rob. 2021;6(54). DOI:10.1126/scirobotics.abd6426
  • Babaee S, Shi Y, Abbasalizadeh S, et al. Kirigami-inspired stents for sustained local delivery of therapeutics[J]. Nat Mater. 2021;20(8):1085–1092. DOI:10.1038/s41563-021-01031-1.
  • El Helou C, Buskohl PR, Tabor CE, et al. Digital logic gates in soft, conductive mechanical metamaterials[J]. Nat Commun. 2021;12(1):1633. DOI:10.1038/s41467-021-21920-y.
  • Zhang H, Wu J, Fang D, et al. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation[J]. Sci Adv. 2021;7(9). DOI:10.1126/sciadv.abf1966
  • Hwang DG, Trent K, Bartlett MD. Kirigami-Inspired structures for smart adhesion[J]. ACS Appl Mater Interfaces. 2018;10(7):6747–6754. DOI:10.1021/acsami.7b18594.
  • Zhao RK, Lin ST, Yuk H, et al. Kirigami enhances film adhesion[J]. Soft Matter. 2018;14(13):2515–2525. DOI:10.1039/c7sm02338c.
  • Fan JA, Yeo WH, Su YW, et al. Fractal design concepts for stretchable electronics[J]. Nat Commun. 2014;5. DOI:10.1038/ncomms4266.
  • Song ZM, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries[J]. Sci Rep. 2015;5. DOI:10.1038/srep10988.
  • Tang RT, Fu HR. Mechanics of buckled kirigami membranes for stretchable interconnects in island-bridge structures[J]. Journal of Applied Mechanics-Transactions of the Asme. 2020;87(5). DOI:10.1115/1.4046003.
  • Zhou X, Parida K, Halevi O, et al. All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure[J]. Nano Energy. 2020;72:104676. DOI:10.1016/j.nanoen.2020.104676.
  • Evke EE, Huang C, Wu YW, et al. Kirigami-Based compliant mechanism for multiaxis optical tracking and Energy-Harvesting applications[J]. Adv Eng Mater. 2020; DOI:10.1002/adem.202001079.
  • Xu Z, Jin CR, Cabe A, et al. Implantable cardiac Kirigami-Inspired Lead-Based energy harvester fabricated by enhanced piezoelectric composite film[J]. Adv Healthc Mater. 2021; DOI:10.1002/adhm.202002100.
  • Sepehri S, Jafari H, Mashhadi MM, et al. Tunable elastic wave propagation in planar functionally graded metamaterials[J]. Acta Mech. 2020;231(8):3363–3385. DOI:10.1007/s00707-020-02705-8.
  • Sepehri S, Jafari H, Mashhadi MM, et al. Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies[J]. Int J Solids Struct. 2020;204:81–95. DOI:10.1016/j.ijsolstr.2020.08.014.
  • Javid F, Wang P, Shanian A, et al. Architected materials with Ultra-Low porosity for vibration control[J]. Adv Mater. 2016;28(28):5943–5948. DOI:10.1002/adma.201600052.
  • Tang YC, Yin J. Design of cut unit geometry in hierarchical kirigami-based auxetic metamaterials for high stretchability and compressibility[J]. Extreme Mech Lett. 2017;12:77–85. DOI:10.1016/j.eml.2016.07.005.
  • Hwang DG, Bartlett MD. Tunable mechanical metamaterials through hybrid kirigami structures[J]. Sci Rep. 2018;8(1). DOI:10.1038/s41598-018-21479-7
  • Yang Y, Dias MA, Holmes DP. Multistable kirigami for tunable architected materials[J]. Phys Rev Mater. 2018;2(11). DOI:10.1103/PhysRevMaterials.2.110601
  • van Manen T, Janbaz S, Ganjian M, et al. Kirigami-enabled self-folding origami[J]. Mater Today. 2020;32:59–67. DOI:10.1016/j.mattod.2019.08.001.
  • Mizzi L, Salvati E, Spaggiari A, et al. Highly stretchable two-dimensional auxetic metamaterial sheets fabricated via direct-laser cutting[J]. Int J Mech Sci. 2020;167:105242. DOI:10.1016/j.ijmecsci.2019.105242.
  • Mizzi L, Salvati E, Spaggiari A, et al. 2D auxetic metamaterials with tuneable micro-/nanoscale apertures[J]. Appl Mater Today. 2020;20:100780. DOI:10.1016/j.apmt.2020.100780.
  • Choi GPT, Dudte LH, Mahadevan L. Programming shape using kirigami tessellations[J]. Nat Mater. 2019;18(9):999–1004. DOI:10.1038/s41563-019-0452-y.
  • Rafsanjani A, Bertoldi K. Buckling-Induced Kirigami[J]. Phys Rev Lett. 2017;8:118. DOI:10.1103/PhysRevLett.118.084301
  • An N, Domel AG, Zhou JX, et al. Programmable hierarchical kirigami[J]. Adv Funct Mater. 2020;30(6):1906711. DOI:10.1002/adfm.201906711.
  • Howell LL. Handbook of compliant mechanisms[M]. New York: Wiley Interscience; 2013.
  • Chen GM, Magleby SP, Howell LL. Membrane-Enhanced Lamina emergent torsional joints for surrogate folds[J]. J Mech Des. 2018;6:140. DOI:10.1115/1.4039852
  • Nelson TG, Zimmerman TK, Magleby SP, et al. Developable mechanisms on developable surfaces[J]. Sci Rob. 2019;4(27). DOI:10.1126/scirobotics.aau5171
  • Ling MX, Howell LL, Cao JY, et al. Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: a survey[J]. Appl Mech Rev. 2020;72(3). DOI:10.1115/1.4045679